
Configuration Optimization of
Fog Computing Platforms for

Control Applications

Mohammadreza Barzegaran

Kongens Lyngby 2021

Technical University of Denmark
Department of Applied Mathematics and Computer Science
Richard Petersens Plads, building 324,
2800 Kongens Lyngby, Denmark
Phone +45 4525 3031
compute@compute.dtu.dk
www.compute.dtu.dk

Summary (English)

Industry 4.0 requires the convergence of Operational and Information Technologies
(OT & IT), which use different computation and communication technologies. Cloud
Computing cannot be used for OT involving industrial applications since it cannot guar-
antee stringent non-functional requirements, e.g., dependability, trustworthiness and
timeliness. Instead, a new computing paradigm, called Fog Computing, is envisioned
as an architectural means to realize the IT/OT convergence. A Fog Computing Platform
(FCP) brings computing and deterministic communication closer to the network’s edge,
where the machines are located in industrial applications. An FCP is implemented as
a set of Fog Nodes (FNs) that integrate communication, computation, and storage re-
sources. Similar to previous research and ongoing standardization efforts, we assume
that the communication between FNs is achieved via the IEEE 802.1 Time Sensitive
Networking (TSN) standard.

With the IT/OT convergence, applications of mixed-criticality will share the same FCP.
At one extreme, we have the safety-critical real-time systems that control industrial
process and have to be operational even in the case of failure. The vision is to virtualize
these as applications composed of tasks and messages running on an FCP. At the other
extreme, we have non-critical Fog applications that do not have stringent timing and
dependability requirements but are required to implement the novel functionalities of
Industry 4.0.

We assume that the platform uses partitioning to enforce the spatial and temporal isola-
tion between applications with different criticalities. Applications are modeled as tasks
interacting via messages transmitted as flows on TSN. We consider several scheduling
policies for tasks within a hierarchical scheduling model that can address the varied
time-criticality requirements of applications. For example, the critical control applica-

ii

tions are scheduled using static cyclic scheduling, and the resources of the Fog appli-
cations are allocated at runtime using best effort policies.

We propose several approaches to the design time FCP configuration optimization
for mixed-criticality applications, such that the performance (in terms of Quality-of-
Control) and timeliness of control applications are guaranteed, and the Quality-of-
Service of non-critical Fog applications is maximized. In addition, we are interested in
extensible configurations that support the addition of future new control applications
and can successfully accommodate at runtime a large number of responsive Fog appli-
cations. At runtime, our approaches handle the migration and best–effort scheduling
of Fog applications to the FNs that have resources for their execution. Determining
an FCP configuration means: deciding the partitions that provide temporal and spatial
isolation among mixed-criticality applications, mapping the tasks to the cores of the
multicore FNs, routing of flows on TSN, synthesizing the task schedule tables and the
Gate Control Lists for switches that schedule the transmission of flows.

We have developed several algorithms that use heuristics, metaheuristics and Constraint
Programming to solve these combinatorial optimization problems. The algorithms have
been extensively evaluated on several test cases, including realistic test cases from the
industry.

Summary (Danish)

Industri 4.0 forudsætter konvergens mellem operationelle teknologier og informations-
teknologier (OT& IT), der gør brug af forskellige beregnings- og kommunikationstek-
nologier. Cloud Computing kan ikke bruges til OT, der involverer industrielle appli-
kationer, da det ikke kan garantere strenge ikke-funktionelle krav, f.eks. pålidelighed,
pålidelighed og aktualitet. I stedet foreslås forestilles et nyt databehandlingsparadigme,
kaldet Fog Computing, som et arkitektonisk middel til at realisere IT/OT-konvergensen.
En Fog Computing Platform (FCP) bringer beregninger og deterministisk kommunika-
tion tættere på netværkets kant, hvor maskinerne er placeret i industrielle applikationer.
En FCP implementeres som et sæt Fog Noder (FN’er), der integrerer kommunikations-
, beregnings- og lagerressourcer. I lighed med tidligere forskning og igangværende
standardiseringsarbejde antager vi, at kommunikationen mellem FN’er opnås via IE-
EE 802.1 Time-Sensitive Networking standarden (TSN).

Med IT/OT-konvergensen vil applikationer med mixed-criticality dele den samme FCP.
På den ene yderste side har vi de sikkerhedskritiske realtidssystemer, der styrer den
industrielle proces og skal være operationelle, selv i tilfælde af fiasko. Visionen er at
virtualisere disse som applikationer sammensat af opgaver og meddelelser, der kører
på en FCP. På den anden side har vi de ikke-kritiske Fog-applikationer, der ikke har
strenge krav til timing og pålidelighed, men som er nødvendige for at implementere de
nye funktioner i Industri 4.0.

Vi antager, at platformen udnytter opdeling til at opfylde den rummelige og tidsmæs-
sige isolering mellem applikationer med forskellige kritiske egenskaber. Applikationer
modelleres som opgaver, der interagerer via meddelelser, der transmitteres som strøm-
me på TSN. Vi overvejer flere planlægningsprincipper for opgaver inden for en hierar-
kisk planlægningsmodel, der kan opfylde de forskellige tidskritiske krav til forskellige

iv

anvendelser. Eksempelvis planlægges de kritiske kontrolapplikationer ved anvendel-
se af statisk cyklisk planlægning, mens ressourcerne i Fog-applikationerne tideles ved
kørsel baseret på bedste indsats procedurer.

Vi foreslår adskillige tilgange til designtid FCP-konfigurationsoptimering til applika-
tioner med mixed-criticality, således at ydeevnen (med hensyn til kvalitetskontrol) og
aktualiteten af kontrolapplikationer er garanteret, og servicekvaliteten for ikke-kritiske
Fog-applikationer er maksimeret. Derudover er vi interesseret i skalerbare konfigura-
tioner, der understøtter tilføjelsen af nye fremtidige kontrolapplikationer, og som un-
dereksekvering kan sikre et stort antal responsive Fog-applikationer under kørsel. Ved
eksekvering sikrer vores system migrering og planlægning af optimal indsats for Fog-
applikationer til FN’er, der har ledige ressourcer til deres udførelse. Bestemmelse af en
FCP-konfiguration betyder: at beslutte de opdelinger, der giver tidsmæssig og rumme-
lig isolering blandt applikationer med blandet kritisk betydning, kortlægge opgaverne
til kernerne i multicore FN’erne, routing af strømme på TSN, syntetisering af opgave-
tabellen og Gate Control Lists for switcher, der planlægger transmission af strømme.

Vi har udviklet flere algoritmer, der bruger heuristik, metaheuristik og begrænsnings-
programmering til at løse disse kombinatoriske optimeringsproblemer. Algoritmerne
er blevet udførligt evalueret i flere testeksempler, herunder realistiske testeksempler fra
branchen.

Preface

This thesis was prepared at Department of Applied Mathematics and Computer Science
(DTU Compute) to fulfill the requirements for acquiring a Ph.D. degree in Computer
Science.

In this thesis, I propose analysis and optimization methods for configuring Fog Com-
puting Platforms that host mixed-criticality applications, including critical control ap-
plications, aiming to guarantee their performance and timeliness. The thesis consists
of an introductory chapter and four papers.

The work has been supervised by Professor Paul Pop and co-supervised by Professor
Jan Madsen.

Lyngby, 14-May-2021
Mohammadreza Barzegaran

vi

Acknowledgments

First of all, I do not know how to thank and show appreciation to my supervisor, Prof.
Paul Pop. During the course of my Ph.D. and despite my different academic back-
ground, his guidance helped me in all aspects of my research endeavor. He also gave
me the opportunity and encouragement to strengthen my profile as a future high-skilled
researcher. I am deeply thankful for his constant, broad, professional, and constructive
feedback, which helped me fill the gaps in my training.

I notably appreciate Dr. Bahram Zarrin, who I had the opportunity to work with in
the FORA ETN— European Training Network on Fog Computing for Robotics and
Industrial Automation, for his support and guidance. I want to thank Assoc. Prof. Ste-
fan Schulte (from TU Wien, Austria), for his hospitality and advice during my external
stay in FORA. My special appreciation goes towards Dr.Juha Kuusela for the insightful
conversations we had during my FORA external stay at Danfoss Drives A/S.

I would like to express a big thank you to Assoc. Prof. Anton Cervin (from Lund
University, Sweden) for his guidance and constructive discussions related to control
and real-time co-design, which helped me early in my Ph.D. studies. I highly appreciate
the support of the administrative and technical staff, especially Karin Tunder and Ellen
Juel Nielsen, the ones who always helped me promptly. I would also like to thank all
fellow students and supervisors in FORA project whom we had a great time together.

Finally, I would like to thank my family for their love and support from the deep down
of my heart. My special gratitude goes to my sister, Dr. Marieh Barzegaran, for her
valuable virtual presence in my life from thousands of miles away. I take the opportu-
nity to say “I love you” to my parents, Parivash and Naser. I also say a huge thank you
to Aliyeh, Naser, Mahsa, Peyman, Mohammadreza, Farnaz and little Ava who support

viii

me and became my new family.

Last but not least, I acknowledge that the research leading to these results has received
funding from the European Union’s Horizon 2020 research and innovation programme
under the Marie Skłodowska-Curie grant agreement No. 764785, FORA—Fog Com-
puting for Robotics and Industrial Automation.

Abbreviations

AADL Architecture Analysis & Design Language

AC Alternating Current

AI Artificial Intelligence

AVB Audio-Video Bridging

BE Best Effort

CACSS Control-Aware Communication Scheduling Strategy

CP Constraint Programming

CPS Cyber-Physical System

DAG Directed Acyclic Graph

DC Direct Current

ECOS Extensible Configuration Optimization Strategy

EDF Earliest Deadline First

ES End-System

FCP Fog Computing Platform

FCS Feedback Control System

FIFO First-In-First-Out

FN Fog Node

GCL Gate Control List

HMI Human–Machine Interface

IIoT Industrial Internet of Things

ILP Integer-Linear Programming

x Abbreviations

IoT Internet of Things

IPC Industrial Personal Computer

IT Information Technology

KPI Key Performance Indicator

MILP Mixed Integer-Linear Programming

ML Machine Learning

MTU Maximum Transmission Unit

NRE Non-Recurring Engineering

OPC UA OPC Unified Architecture

OT Operational Technology

PCP Priority Code Point

PLC Programmable Logic Controller

PPTP Point-to-Point Tunneling Protocol

QoC Quality of Control

QoS quality-of-service

RM Rate Monotonic

SA Simulated Annealing

SAE Society of Automotive Engineers

SIL Safety Integrity Level

SMT Satisfiability Modulo Theories

ST Scheduled Traffic

SW Switch

TSN Time-Sensitive Networking

TT Time-Triggered

UC Use Case

WCET Worst-Case Execution Time

List of Figures

1.1 Overview of a Fog Computing Platform 4
1.2 Overview of the FORA Fog node design 6
1.3 Schematics of TSN Switch internals 11
1.4 An example architecture model . 12
1.5 An example application model . 15
1.6 Schematics of a control application 17
1.7 Step response of a sample control loop 18

2.1 Fog Computing platform in Paper A 35
2.2 Fog node architecture . 38
2.3 Example architecture with two FNs. 39
2.4 Example partition tables and schedule tables 40
2.5 Example application model with three applications. 41
2.6 A simple FCS. 43
2.7 Step response of a sample control loop. 44
2.8 Four different configuration for the applications 53

3.1 Fog Computing Platform in Paper B 64
3.2 Architecture model example . 67
3.3 TSN switch internals. 68
3.4 Example solution . 69
3.5 A simple FCS. 72
3.6 Step response of a sample control loop 74
3.7 Overview of CACSS. 76
3.8 Schematics of the hardware platform. 83
3.9 Comparison of analytical function Ω with JitterTime 85
3.10 Implementation of TC1 in OMNET++. 86
3.11 The details of the measured E2E delay of flows 88

xii

4.1 Fog Computing Platform in Paper C 95
4.2 Example architecture with three end-systems and two switches 100
4.3 TSN switch internals in Paper C . 101
4.4 Example application model in Paper C 103
4.5 An FCP hosting Fog applications and future control applications at run-

time. 104
4.6 Overview of ECOS. 107
4.7 Example server availability and load 115

5.1 FCP overview . 127
5.2 Automation pyramid. 129
5.3 Basic block diagram of an electric drive. 130
5.4 Conveyor belt. 131
5.5 Typical implementation of a conveyor belt system. 132
5.6 AADL diagrams of the baseline architecture. 133
5.7 AADL diagram of the fogified architecture. 137
5.8 Self baggage drop system in Brisbane airport. 139
5.9 UC Schematics . 140
5.10 UC AADL model. 141
5.11 Distributed ML . 147

List of Tables

1.1 Standards and amendments in TSN 10

2.1 Summary of notation in Paper A . 37
2.2 Illustrative example applications. 52
2.3 Evaluation results for our proposed optimization in Paper A 54
2.4 Realistic test case . 57

3.1 Summary of the notation in Paper B 66
3.2 Application example . 69
3.3 Evaluation on the synthetic test cases 82
3.4 Comparison of different communication scheduling mechanisms . . . 83
3.5 Details of the implemented-on-hardware test cases 84
3.6 Evaluation on realistic test case . 86
3.7 Simulation results of the synthetic test case 1 87

4.1 Summary of the notation in Paper C 99
4.2 Details of ten critical control synthetic test cases 118
4.3 Evaluation results on synthetic test cases 119
4.4 Fog-based pharmaceutical production line 120

5.1 System-level requirements for Fog-based drives 134
5.2 KPIs . 135
5.3 Summary of the UC hardware equipment 142
5.4 Evaluation methods of KPIs . 142
5.5 UC’s applications running on the FN N1 143
5.6 Threats and their mitigation . 144
5.7 QoC of control applications . 145

xiv

Contents

Summary (English) i

Summary (Danish) iii

Preface v

Acknowledgments vii

Abbreviations ix

1 Introduction 1
1.1 Motivation and Background . 1
1.2 Fog Computing . 3

1.2.1 The FORA Fog Computing Platform 5
1.3 System and Application Models . 11

1.3.1 Architecture Model and Example 11
1.3.2 Application Model and Example 12
1.3.3 Objectives . 14

1.4 Systems Engineering Decision Tasks and Related Work 19
1.4.1 Related Work . 21

1.5 Thesis Overview and Contributions 28
1.5.1 Paper A: Performance Optimization of Control Applications

on Fog Computing Platforms Using Scheduling and Isolation 30
1.5.2 Paper B: Communication Scheduling for Control Performance

in TSN-based Fog Computing Platforms 30
1.5.3 Paper C: Extensibility-Aware Fog Computing Platform Con-

figuration for Mixed-Criticality Applications 31
1.5.4 Paper D: Electric Drives as Fog Nodes in a Fog Computing-

based Industrial Use Case 32

xvi CONTENTS

2 Paper A: Performance Optimization of Control Applications on Fog Com-
puting Platforms Using Scheduling and Isolation 33
2.1 Introduction . 34

2.1.1 Contributions . 36
2.1.2 Outline of the Paper . 36

2.2 System Model . 36
2.2.1 Architecture Model . 36
2.2.2 Application Model . 39

2.3 Problem Formulation . 40
2.4 Control Theory . 42

2.4.1 Feedback Control System 42
2.4.2 Control Design . 44
2.4.3 Calculation of Control Performance 45

2.5 Solution . 46
2.5.1 Simulated Annealing . 46
2.5.2 Scheduling and Partitioning Heuristic (SPH) 48
2.5.3 Cost Function . 49
2.5.4 SA Design Transformations 50
2.5.5 Illustrative Example for FCPC 51

2.6 Experimental Evaluation . 53
2.6.1 Realistic Test Case . 56

2.7 Related Work . 57
2.8 Conclusions and Future Work . 60

3 Paper B: Communication Scheduling for Control Performance in TSN-
based Fog Computing Platforms 61
3.1 Introduction . 62

3.1.1 Contributions . 64
3.1.2 Outline of the Paper . 65

3.2 System Model . 65
3.2.1 Architecture Model . 65
3.2.2 TSN Switch Model . 67
3.2.3 Application Model . 68

3.3 Problem Formulation . 70
3.4 Control Theory . 71

3.4.1 Feedback Control Systems and Control Design 71
3.4.2 Modeling and Timing of Feedback Control Systems 72
3.4.3 Quality of Control . 74

3.5 Constraint Programming . 75
3.5.1 CP model . 76
3.5.2 Constraints . 77
3.5.3 Analytical QoC CP model and Objective Function 79
3.5.4 Search Strategy . 81

3.6 Evaluation . 81

CONTENTS xvii

3.6.1 Test Cases and Setup . 81
3.6.2 Comparison with the related work 83
3.6.3 Evaluation on Synthetic Test Cases 84
3.6.4 Evaluation on a Realistic Test Case 86
3.6.5 OMNET++ validation . 86
3.6.6 Evaluation on a Hardware Platform 87

3.7 Related Work . 89
3.8 Conclusions and Future Work . 91

4 Paper C: Extensibility-Aware Fog Computing Platform Configuration for
Mixed-Criticality Applications 93
4.1 Introduction . 94
4.2 System Models . 98

4.2.1 Architecture Model . 98
4.2.2 TSN Switch Model . 101
4.2.3 Application Model . 102
4.2.4 Scheduling Policies . 104

4.3 Problem Definition . 105
4.4 Proposed Solution . 106

4.4.1 CP model . 107
4.4.2 CP Constraints . 109
4.4.3 Objective function . 113
4.4.4 Search Strategy . 117

4.5 Evaluation . 117
4.5.1 Test Setup and Scenarios . 117
4.5.2 Supporting future control applications 118
4.5.3 Response time analysis of Fog applications 119
4.5.4 Extending with upgrades . 121

4.6 Related Work . 121
4.7 Conclusions . 123

5 Paper D: Electric Drives as Fog Nodes in a Fog Computing-based Indus-
trial Use Case 125
5.1 Introduction . 126
5.2 Electric Motors and Drives . 128

5.2.1 Electric Motors . 129
5.2.2 Electric Drives . 129
5.2.3 Example Industrial Setting 131
5.2.4 Baseline Drive Architecture 131
5.2.5 Requirements and KPIs . 134

5.3 Fog-based Electric Drives . 135
5.3.1 FORA FCP Reference Architecture 135
5.3.2 Fogified Drive Architecture 136

5.4 Evaluation . 139

xviii CONTENTS

5.4.1 UC Description . 139
5.4.2 Assessing the KPIs . 141

5.5 Related work . 148
5.6 Conclusions . 150

Bibliography 151

CHAPTER 1

Introduction

1.1 Motivation and Background

The third industrial revolution (“Industry 3.0”) began around 1970 with the first com-
puter era and transformed mechanical and analog electronic technologies into digital
electronics in the form of digital computing and communication technologies [ZLZ15].
Industry 3.0 involved using these technologies to run control systems for automation in
production and other industrial systems, which brought innovations and new business
opportunities. The control systems and resulting automation advantage productivity,
safety, and quality. An example benefit in manufacturing is the production of large
amounts of standardized products in a constant flow, i.e., mass production [Bea04].

A control system operates and commands a dynamical system (for example, robots and
industrial machines) using a control algorithm [OY02]. The essential ingredients of a
control system are: (i) objectives of control that are inputs of the control systems, (ii)
control system components that are computers and computer-based algorithms, and
(iii) results or outputs that are the control signals applied to physical entities [GK17].
To this end, control systems use sensors to sample the dynamical system that show the
system’s current state and calculate the deviation from a desired set-point. The control
algorithm calculates output signals based on the deviation from the desired set-point.
It drives the dynamical system to the desired set-point by applying the control signal
via actuators. An example of a control system is the pressure regulator in a factory

2 Introduction

that maintains the fluid pressure. In this example, the pressure regulator uses a sensor
to measure the fluid’s current pressure as the input. It calculates the deviation of the
current fluid pressure from a desired pressure value, determines the appropriate valve
opening value to maintain the desired fluid pressure, and applies the determined valve
opening value via the actuator, which is the valve positioner.

These sampling and actuation impose real-time constraints on the control system. As
defined by Kopetz, “A real-time computer system is a computer system where the cor-
rectness of the system behavior depends not only on the logical results of the computa-
tions, but also on the physical time when these results are produced” [Kop11]. A com-
mon misconception is that “A real-time computer system is able to quickly produce the
results of computations” [But11], however, real-time computing is about predictabil-
ity—even during the worst-case behavior, not about speed [Kop11, But11].

A real-time system can be classified from the perspective of its timing constraints, e.g.,
deadlines. A deadline is a time instant when the results of the real-time computation
must be produced, and it is imposed on the activities of a real-time system, depending
on the characteristics of the implemented application [Kop11]. On the one hand, a hard
real-time system requires results of the computation to be produced before or on the
deadline, called a hard deadline, otherwise its operation is incorrect. On the other hand,
a soft real-time system has less stringent timing constraints, and missing a soft deadline
does not invalidate the correctness of the results but leads to performance degradation
[Kop11]. Furthermore, missing a deadline in a hard real-time system is considered as
a failure. However, missing a deadline in a soft real-time system instead degrades the
usefulness of the results of computation resulting in a lower quality-of-service [SR94].

Real-time systems are often also safety-critical systems [Kni02], whose failure may re-
sult in death or serious injury to people, loss or severe damage to equipment/property,
or environmental harm [Kni02]. Aircraft flight control and medical devices are exam-
ples of such safety-critical systems, where a failure may cause injury or death to people.
This criticality of safety functions implemented by safety-critical real-time systems is
determined via risk assessment and failure analysis methods [Rau14].

A mixed-criticality system is defined as “an integrated suite of hardware, operating
system, middleware services, and application software that supports the execution of
safety-critical, mission-critical, and non-critical software within a single, secure com-
puting platform” [BBB+09]. A failure in a mission-critical system will result in a se-
rious impact on its normal operation. However, a non-critical system being inessential
can become operational again after a failure.

Industry 3.0 uses Operational Technology (OT), which relies on dedicated hardware
and software that implement the control systems and process the control data with
real-time requirements [Glo21]. OT provides guarantees for real-time requirements
and has a high degree of dependability. Examples of technologies used in OT are

1.2 Fog Computing 3

Industrial Personal Computers (IPCs), which are computers that have been ruggedized
and configured for industrial applications, Programmable Logic Controllers (PLCs),
which are computers that run real-time operations and control machines, and time-
optimized safety-critical proprietary communication protocols.

The real-time requirements of industrial applications have so far been fulfilled via OT
systems that are statically configured and use overprovisioning, with no support for dy-
namic changes and reconfigurations [Eur16]. OT is not suited for business intelligence
applications or Big Data and analytics due to technological constraints such as limited
communication bandwidth and limited computation resources [Eur16, HGB14]. Ad-
ditionally, OT systems are often expensive due to the absence of open and standards-
based solutions, the lock-in by specific vendors and the confines of their product devel-
opment plans [Eur16].

On the contrary, Information Technology (IT) uses different computation and com-
munication technologies that are optimized for dealing with increased scalability and
performance, storing and manipulating data [RL19]. IT brings flexibility and capabili-
ties for faster development and improvement with Cloud Computing, Artificial Intelli-
gence (AI), and Big Data. However, IT is not directly applicable to industrial applica-
tions where non-functional properties such as timeliness and dependability have to be
guaranteed [GVCL14].

1.2 Fog Computing

The term “IT/OT convergence” refers to the merging of technologies from IT sys-
tems with OT systems, which are using separated computation and communication
paradigms [Eur16, KHS10]. The evolution of novel technological paradigms via the
IT/OT convergence will bring effectiveness, flexibility, connectivity, interoperability,
scalability, and capabilities for faster development and improvement with Cloud Com-
puting, AI, and Big Data in industrial systems [GLSC17]. Although the IT/OT conver-
gence has many challenges due to vendor lock-in and the absence of open and standard-
based solutions [Eur16]), it is required in order to enable Industry 4.0 [Gil16]. Thus,
both industry and academia have made a significant effort to promote the convergence
of IT/OT [PML+19, HDNQ17].

The term “Fourth Industrial Revolution” (also called Industry 4.0) was first introduced
by a team of scientists developing a high-tech strategy for the German government
[KLW11]. The term was promoted to a wider audience by Klaus Schwab [Sch17]
who includes it in technologies that combine hardware, software, and biology, with an
emphasis on advances in communication and connectivity [Sch21]. Schwab expects
this new industrial revolution to be marked by breakthroughs in emerging technologies

4 Introduction

Figure 1.1: A Fog Computing Platform consists of Fog Nodes (boxes) running ap-
plications (Apps) and are connected to the Cloud and to each other via
physical links (thick lines) [BP21a].

in fields such as robotics, artificial intelligence, nanotechnology, quantum computing,
biotechnology, the internet of things, the Industrial Internet of Things (IIoT), decen-
tralized consensus, fifth-generation (5G) wireless technologies, 3D printing, and fully
autonomous vehicles [Sch21].

Industry 4.0 will be realized via interconnected Cyber-Physical Systems (CPSs) that
integrate computation with the physical process [Lee08] and create the capabilities
required for IIoT [Erb17]. Moreover, Industry 4.0 requires the IT/OT convergence as its
enabler [Gil16]. Fog Computing, is envisioned as an architectural means to realize the
vision of Industry 4.0. Fog Computing is a “system-level architecture that distributes
resources and services of computing, storage, control and networking anywhere along
the continuum from Cloud to Things” [Fog21]. Fog Computing is distinguished from
Edge Computing, which is defined as an architecture in which the resources of an edge
server are placed at the edge of the Internet, in close proximity to CPSs, mobile devices,
sensors, and IIoT endpoints.

Fog Computing will enable a powerful convergence, unification, and standardization at
the networking, security, data, computing, and control levels. It will lead to improved
interoperability, security, more efficient and rich control, and higher efficiency and
flexibility [BMNZ14, YLL15, BMZA12, MKB18]. The vision of Fog Computing is
to provide the same dependability level of OT but instead virtualize control systems as
software running in the Fog.

1.2 Fog Computing 5

A Fog Computing Platform (FCP) consists of Fog Nodes (FNs) that integrate commu-
nication and computation resources to enable a variety of communication and compu-
tation options (see Fig. 1.1). FNs can have different computation and communication
capabilities and can be used together in the same FCP to host applications with various
resource demands [PRGS18]. Several solutions for implementing FNs have been pro-
posed [PML+19, HDNQ17, BMNZ14] and several FN solutions have been developed
by companies [TTT21, Neb21].

With a deterministic communication solution integrated into an FCP, the FN (that vir-
tualizes the control system) can be placed at a further spatial distance from the dynam-
ical system (that the FN controls). This vision is realized via interconnected CPSs,
virtualization solutions [LJYZ17], standardized Deterministic Ethernet solutions from
IEEE Time-Sensitive Networking (TSN) Task Group [IEE21b], upcoming 5G wireless
standards [DMP+14], and interoperability standards such as OPC Unified Architec-
ture (OPC UA) [MLD09].

1.2.1 The FORA Fog Computing Platform

The European Training Network on Fog Computing for Robotics and Industrial Au-
tomation (FORA ETN) [PZB+21] is one of the initiatives working on the realization of
an FCP. FORA has proposed an FCP reference architecture targeting IIoT applications
[PZB+21]. The FORA FCP is focused on the virtualization of industrial control, which
is implemented as control applications.

The FORA FCP reference architecture is defined using the Architecture Analysis &
Design Language (AADL), which is a well-known architecture description language
in the domain of real-time embedded systems [FGH06]. The AADL model captures
the main components and their interconnections in the FCP [PZB+21] and discusses
their possible implementation using “Technology Bricks”, which can be a hardware or
software prototype, a method, a tool, a model, etc.

The FNs of the FORA FCP contain multicore CPUs, memory, I/Os, communication
cards for TSN, Ethernet, wireless in terms of hardware, and the software stack includes,
hypervisors, middleware, and different policies and mechanisms for resource manage-
ment, see the following sections for more information. Fig. 1.2 shows an overview of
the FORA FN design using AADL.

Furthermore, the FORA FCP is equipped with deterministic networking which is real-
ized using open standards such as IEEE 802.1 TSN [IEE21b] and relies on interoper-
ability standards such as OPC UA [MLD09]. A TSN network guarantees bounded la-
tency communication between FNs of an FCP and its environment. This guarantee en-
ables the relocation of real-time critical applications from machines to FNs [PZB+21].

6 Introduction

Figure 1.2: Overview of the FORA Fog node design [PZB+21]

A TSN switch can be part of an FN, which is the case in some areas such as automotive,
or a separate device [PZB+21], which is typical, for example, in industrial automation.

The FORA FCP is capable of hosting applications that are assigned to run on FNs,
e.g., critical control applications that are configured at design-time and dynamic Fog
applications that may be migrating in and out of FNs and have to be handled at runtime.
To this end, the FORA FCP proposes using deterministic virtualization that helps the
timeliness and reduces the effort required for safety and security assurance. The deter-
ministic virtualization is realized by integrating hypervisors into FNs, see Sect. 1.2.1.2.
Additionally, the FORA FCP uses middleware for supporting both critical control and
dynamic Fog applications [PZB+21]. The FORA Fog middleware will also build on
application layer protocols such as MQTT-SN [SCT13] for northbound communication
and TSN for southbound communication.

Throughout this thesis, we assume that the Industry 4.0 mixed-criticality applications
are implemented using the FORA FCP. These applications are protected from each
other using the technologies presented in the following sections.

1.2 Fog Computing 7

1.2.1.1 Resource Management

An FCP can contain various types of FNs, from low-end to high-end concerning their
communication and computation capabilities [PRGS18]. However, this different com-
putational and communication resources in the FCP comes with challenges in deploy-
ing and managing the applications on the FNs which have different requirements and
demands [GASR19]. Thus, the FCP needs to monitor and manage its resources, similar
to the Cloud Computing that automatically manages its resources to scale and handle
increasing workload [MNH+15].

There are various resource management approaches in the literature targeting different
metrics [BM20, HV19]. Most of the resource management approaches in the literature
aim to provide low-latency and energy efficiency [BM20], and cannot provide real-time
and dependability guarantees.

The goal of resource management and configuration techniques in FORA FCP refer-
ence architecture is to provide the necessary computation and communication resources
to all applications via FNs, balance the overall resource utilization landscape, and pro-
vide real-time guarantees for critical applications [PZB+21].

1.2.1.2 Hypervisors

Virtualization is the act of creating a virtual version of computer hardware platforms,
storage devices, and computer network resources [Wik21b]. It is realized via hyper-
visors that are computer software or firmware [IBM21]. A hypervisor creates an ab-
straction layer over the resources of a “host machine”, allowing to divide the resources
between different applications, e.g., mixed-criticality applications [IBM21]. The act of
dividing the host machine’s resources is called partitioning and each resource segment
is called a partition [Rus00].

Popek et al. classify hypervisors into two types: (1) native or bare-metal hypervisors
and (2) hosted hypervisors [PG74]. The former run directly on the host machine’s
hardware and the later run on a conventional operating system. Hypervisors enforce
spatial isolation in partitioning, which protects the code or private data of one partition
not to be altered by any other partitions. Spatial isolation is achieved via address trans-
lation and assignment of a different memory location to each partition [Rus00]. Since
a partition may run applications that require timeliness, the hypervisor may enforce
temporal isolation which protects the timeliness of applications in one partition from
being affected by the running of the other partitions [Rus00]. Hypervisors enforce the
spatial and temporal isolation by utilizing hardware-supported virtualization extensions
of modern processors that allow such mechanisms [RS19, SVLN13].

8 Introduction

Throughout this thesis, we assume FNs of the FCP use hypervisors such as ACRN
[ACR20] and PikeOS [KW07] to virtualize control applications and separate appli-
cations in static partitions using spatial and temporal isolation. Each static partition
consists of several partition slices that are time slots to which the resources are as-
signed to the partition and is scheduled via static partition tables that capture the start
time and finishing time of each partition slice.

1.2.1.3 Scheduling Policies

Scheduling is a method for assigning resources for completing activities (e.g., tasks or
messages) [Wik21a]. The activity can be computation elements or data flows. The
scheduling is carried out by a scheduler that implements a policy to achieve goals
such as minimizing latency, minimizing wait-time, and maximizing throughput. Most
schedulers use policies that are not real-time; thus, they are not suitable for real-time
applications.

There are two approaches in the literature for scheduling: (i) time-triggered, such as
non-preemptive static cyclic scheduling, also called timeline scheduling, and (ii) event
triggered, such as preemptive periodic scheduling, e.g., using fixed, Rate Monotonic
(RM) or dynamic, Earliest Deadline First (EDF) priorities [But11]. Static cyclic non-
preemptive scheduling has been recommended for safety-critical applications [Kop11,
SL03]. In this method, the scheduler repeats a static schedule determined at design-
time with a given cycle, i.e., a hyperperiod (also called major cycle), see Sect. 1.3.2.
The scheduler divides the time interval into time slots of equal lengths which can be
allocated to perform activities by synchronizing their activation at the beginning of
each time slot [But11].

The preemptive periodic scheduling approaches generate the schedule at runtime based
on arrival times of periodic activities and their priorities [But11]. Researchers have
shown how periodic servers can be used to handle aperiodic activities [But11], which
are typical for non-critical Fog applications. Thus, the server acts similarly to any
periodic activity and is scheduled by the same scheduling policy as the other periodic
activities. The server prioritizes the completion of an activity on its arrival based on a
given priority metric [BLAC05]. Once an aperiodic activity arrives, the server executes
it within the limit of its capacity. The activity may be preempted several times by the
termination of the server’s time slot or higher-priority activities until its execution is
completed.

Mixed-criticality applications require different scheduling policies depending on their
time-criticality. Similar to related work, we use static cyclic scheduling (timeline
scheduling) for critical hard real-time tasks since this is a scheduling policy suited
for hard real-time applications in safety-critical areas. Fog applications are scheduled

1.2 Fog Computing 9

using a deferrable server approach [BLAC05, SLS95, SSL89]. To put together several
scheduling policies, we use the hierarchical scheduling model [WZS+14].

A hierarchical scheduling framework can be generally represented as a tree, or a hi-
erarchy, of nodes, where each node represents a scheduling approach and resources
are allocated from a parent node to its children nodes [SL03]. Any scheduling al-
gorithm can be employed as a scheduling approach if it is able to provide real-time
guarantees. Although hierarchical scheduling has been typically used in conjunction
with scheduling policies that handle periodic activities, aperiodic activities can also
be handled [LB10]. As mentioned, aperiodic activities model the dynamic Fog ap-
plications that migrate across FNs and are best-effort. Such Fog applications should
be isolated from critical applications, e.g., via partitions that protect higher-criticality
real-time applications, and are handled using best effort policies, e.g., resource reser-
vation techniques [BLAC05]. The performance and predictability of these mixed-
criticality applications can be analyzed using the results of real-time computing the-
ory [But11, BLAC05, BD13].

1.2.1.4 Time-Sensitive Networking

Real-time and safety-critical areas use several specialized protocols such as CAN [Spe91],
FlexRay [Con05], SAFEbus [HD92] and AFDX [Pic06]. The market for fieldbuses
in the industrial automation area is highly fragmented and uses proprietary protocols
such as ProfiNet [Comb] and EtherCAT [Coma]. Due to increasing demands for more
bandwidth, interoperability and standardization, there is currently a trend to extend the
well-known Ethernet protocol [Gro21] for real-time and safety-critical applications.

Time-Sensitive Networking (TSN) is a set of standards developed by the IEEE Time-
Sensitive Networking Task Group of the IEEE 802.1 Working Group [IEE21b]. TSN
defines mechanisms for the time-sensitive and dependable transmission of data over
switched Ethernet networks. Table 1.1 presents the current set of standards and amend-
ments in TSN1.

The deterministic behavior of TSN is realized via: (1) shapers and schedulers and
(2) stream reservation protocols. The former has been addressed in IEEE 802.1Qav
(Forwarding and Queuing Enhancements for Time-Sensitive Streams), IEEE 802.1Qbv
(Enhancements for Scheduled Traffic), and IEEE 802.1Qcr (Asynchronous Traffic Shap-
ing), see Table 1.1. The later has been introduced in IEEE 802.1Qat (Stream Reserva-
tion Protocol), IEEE 802.1Qcc (Stream Reservation Protocol Enhancements and Per-
formance Improvements), and IEEE 802.1CB (Frame Replication and Elimination for
Reliability) where reliability requirements are addressed.

1References to the standards can be found via IEEE Xplore using their names.

10 Introduction

Table 1.1: Standards and amendments in TSN

Standard Definition
802.1Q-2005 Virtual Bridged Local Area Networks
802.1Q-2011 Media Access Control (MAC) Bridges and Virtual

Bridged Local Area Networks
802.1Q-2014 Bridges and Bridged Networks
802.1BA-2011 Audio Video Bridging (AVB) Systems
802.1BA-
2011/Cor 1-2016

Audio Video Bridging (AVB) Systems– Corrigendum 1:
Technical and Editorial Corrections

802.1CB-2017 Frame Replication and Elimination for Reliability
p802.1Q-2018 Bridges and Bridged Networks (Project Authorization Re-

quest)
Amendment Definition
802.1AS-2011 Timing and Synchronization for Time-Sensitive Applica-

tions in Bridged Local Area Networks
802.1Qav-2009 Forwarding and Queuing Enhancements for Time-

Sensitive Streams
802.1Qat Stream Reservation Protocol (SRP)
802.1Qca-2015 Path Control and Reservation
802.1Qbv-2015 Enhancements for Scheduled Traffic
p802.1AS-Rev Timing and Synchronization for Time-Sensitive Applica-

tions (Project Authorization Request)
p802.1Qcc Stream Reservation Protocol (SRP) Enhancements and

Performance Improvements (Project Authorization Re-
quest)

p802.1Qcr Asynchronous Traffic Shaping (Project Authorization Re-
quest)

Different traffic types have been introduced in TSN, such as Scheduled Traffic (ST)
also called Time-Triggered (TT), Audio-Video Bridging (AVB), and Best Effort (BE),
to support different timeliness requirements. ST is being sent based on schedules stored
in the network switches using the IEEE 802.1Qbv (Enhancements for Scheduled Traf-
fic) amendment. With the ST, TSN provides guarantees for traffic timeliness. In this
thesis, we focus on the ST type which is the most suitable for real-time applications
where stringent timing is required. However, the methods in this thesis can be used in
conjunction with any traffic type where the latency can be bounded, that is, can handle
real-time transmissions.

A TSN switch has a number of ports, a switching fabric, priority queues, gates, and
a Gate Control List (GCL) (see Fig. 1.3 for more details of TSN switch internals).

1.3 System and Application Models 11

Figure 1.3: Schematics of TSN Switch internals [BP21a].

Each port composes an ingress port and an egress port which has a set of eight pri-
ority queues (according to the IEEE 802.1Q standard [IEE14]). The switching fabric
receives traffic in the form of flows from the ingress ports and forwards each flow to
the egress port which is determined by the predefined internal routing table. The egress
port stores the flow that has a Priority Code Point (PCP) field in the frame header that
specifies the priority in a relevant priority queue in First-In-First-Out (FIFO) order.
According to the 802.1Qbv standard, the transmission of traffic from each queue is
regulated by an associated gate that opens and closes based on a predefined GCL that
contains the opening and closing time of the switch gates. Queued flows in a queue can
be transmitted when a gate is open and cannot be transmitted when the gate is closed.

1.3 System and Application Models

1.3.1 Architecture Model and Example

An FCP consists of FNs, sensors (e.g., cameras, radars, etc.), and actuators (e.g., elec-
tric drives, robots, etc.), which we assume that they are connoted to each other via
TSN. The TSN network consists of End-Systems (ESs) (which are the FNs, sensors,
and actuators in the FCP) and network Switches (SWs) interconnected via full-duplex
bi-directional physical links. The SWs can be stand-alone (typical in the industrial
area) or integrated into the ESs (typical in automotive), see Fig. 1.4. In this thesis, an

12 Introduction

Figure 1.4: An example architecture model: Three Fog nodes are connected to five
end-systems via two switches.

FCP is modeled as a directed graph for better understanding. The graph nodes are the
ESs, and the graph vertices are the physical links.

A physical full-duplex bi-directional link is known with the nodes it connects (e.g.,
FN1-ES1), and has a specific speed. A sequence of such links is called a route which
starts with a link originating from a talker ES and ending with a link to a listener ES.
A message in TSN is forwarded through an associated route.

In the example given in Fig. 1.4, three FNs, two SWs, and five ESs (i.e., two sensors and
three actuators) are connected to each other via physical links. In this example, the FN1
has a dual-core CPU. Additionally, a possible route is [FN1-SW1,SW1-SW2,SW2-actuator3].

1.3.2 Application Model and Example

The application areas addressed in the thesis, such as automated manufacturing, critical
infrastructures, smart buildings, and smart cities, are typically safety-critical and real-
time, requiring guaranteed non-functional properties, such as timeliness, reliability,
availability, safety, and security.

Aligned to other research initiatives [PZB+21], in this thesis, we envision that Fog
Computing will be used as an architectural means of implementing such systems. In
such a context, an FCP will host mixed-criticality applications, which may include:
safety-critical control applications, real-time applications, and best-effort Fog applica-
tions.

1.3 System and Application Models 13

In addition to control applications, an FCP will also host a variety of real-time appli-
cations, both hard and soft. The promise of using Fog Computing, which spans the
continuum from things (machines) to Cloud, is that the platform will host a myriad
of novel services that can unlock the new value, e.g., edge data analytics [PZB+21]
that can be used to optimize the system-level operations. Such services are developed
as best-effort applications which do not need strict guarantees but would benefit from
optimizing quality-of-service metrics such as average response time. There have been
several application models proposed in the literature, depending on the periodicity and
time-criticality of the applications [But11, Kop11].

As mentioned in the introduction, the vision is that the industrial control which is cur-
rently implemented via dedicated hardware and control software, will be implemented
on an FCP as control applications, i.e., it will be virtualized. With such an approach, the
challenge—addressed by this thesis—is to achieve the same level of dependability for
the safety-critical control applications as the one taken for granted in current dedicated
implementations. Our approach is to rely on methods and tools that statically configure
at design-time the resources required by these applications, such that, in conjunction
with redundancy, we can guarantee their timeliness and dependability requirements.

There is a plethora of application models proposed both in the real-time computing
[But11, BLAC05] and the Fog Computing [PML+19, BMNZ14] communities. The
different types of applications, with different criticalities and timeliness requirements,
have to be modeled using different approaches. These models have to be able to cap-
ture timing properties such as Worst-Case Execution Times (WCETs), periods and
deadlines for periodic real-time tasks, Quality of Control (QoC) for control tasks, as
well as multiple types of constraints, such as data dependencies between tasks that
communicate via messages, and resource sharing constraints [But11].

In this thesis, we use the periodic task model from the real-time computing litera-
ture [But11], which targets hard real-time applications, to model both the critical con-
trol applications and the real-time applications mentioned earlier. In the following, we
provide the basics of this model, which is further detailed in Sect. 2.2.2 (for tasks)
and Sect. 3.2.3 (for messages). Sect. 1.3.3.1 presents the timeliness properties used for
these applications. In addition, Sect. 1.3.3.2 introduces the QoC metrics we use for
modeling the control applications. Finally, the dynamic Fog applications are modeled
with the aperiodic task model from real-time computing [But11], and the focus is on
minimizing their response times.

A hard real-time application is periodic and it is characterized by a deadline that must
be met. The hard real-time applications can either be control applications, for which
their QoC is important, or they can be real-time applications. Note that control appli-
cations are also real-time, but not all real-time applications are control applications.
Applications are typically modeled as interacting tasks that exchange messages. In this
thesis, applications are modeled using a Directed Acyclic Graph (DAG) [But11], where

14 Introduction

the vertices represent tasks and edges represent network messages exchanging between
the tasks, capturing the data dependency between the tasks. A data-dependent task is
ready when all of its inputs have arrived and produces its outputs when it is terminated.

A control application samples the output of the dynamical system, calculates the devia-
tion from the desired output and drives the deviation to zero by applying an appropriate
control signal. Thus, a control application can be modeled with a DAG consisting of
three tasks exchanging messages, see Application1 in Fig.1.5. The source task, let’s
say Task1 samples the dynamical system by using sensors and may process the cap-
tured data. A typical process for the source task is analog to digital conversion. Once
the data becomes ready, the tasks send it as a message, i.e., Message1 to the control
task that is Task2.

Task2 receives Message1 and calculates the control signal. This task utilizes vari-
ous methods for the calculation and may be engaged with time-consuming calcula-
tion [OY02]. The implemented method for calculating the control signal is called the
control law. The control signal is send as Message2 to the sink task that is Task3.
Task3 may process the input data and exert the control signal to the dynamical system
using the connection with the actuators. A typical process for Task3 is digital to analog
conversion.

A periodic hard real-time task is characterized by a WCET, which is a theoretical upper
bound on the task’s execution [EES+03], a period and a hard deadline. We assume that
we know the WCETs on the cores of FNs where the task is considered for mapping.
A message is characterized by a period inherited from the sending task, and a size in
bytes. The messages that are sent outside of an FN use TSN and thus are transmitted
via flows, which encapsulate the payload into frames. The flows are transmitted using
Ethernet frames. Hence the flow will be split into multiple frames when the size of the
message exceeds the Maximum Transmission Unit (MTU) of 1,542 bytes [Gro21].

Fig. 1.5 shows an example application model with two real-time applications. The
Application1 represents a control application consisting of three tasks. The Application2
has four hard real-time tasks exchanging messages. Each flow is characterized with a
tuple showing flow’s size and period 〈Size,Period〉. Similarly, each tasks is character-
ized with a tuple showing task’s WCET and period 〈WCET,Period〉.

1.3.3 Objectives

Engineering Fog-based systems is challenging, as it has to meet multiple compet-
ing design objectives. Some of the design objectives that need to be considered are:
SWaP—referring to size, weight and power consumption [Hea02, NSL17, Zur05], per-
formance— referring to, e.g., latency and throughput [Hea02, NSL17, Zur05], pre-

1.3 System and Application Models 15

Figure 1.5: An example application model: Application1 has three tasks exchanging
flows. Application2 has four tasks exchanging flows.

dictability—referring to the degree to which a correct prediction or forecast of a sys-
tem’s state can be made either qualitatively or quantitatively, which is important for
guaranteeing timeliness properties [But11].

An important “umbrella” objective for safety-critical real-time systems is dependabil-
ity, i.e., “the ability to deliver service that justifiably be trusted” [ALR+01]. The main
attributes of dependability are reliability, which represents the continuity of correct ser-
vice, availability which represents the readiness for correct service, safety which rep-
resents the absence of catastrophic consequences on the users and the environment, in-
tegrity which represents the absence of improper system state alterations, confidential-
ity which represents the absence of unauthorized disclosure of information, and main-
tainability which represents the ability to undergo repairs and modifications [ALR+01].
Most of these systems are typically developed as products on a competitive global
market, where objectives related to as cost and time-to-market are paramount. Time-
to-market refers to the necessary time to design and produce the system to the point
it can be sold, and the cost objective captures, e.g., the unit cost, the cost to produce
one copy of the product or the Non-Recurring Engineering (NRE) cost, the one-time
engineering cost to design and develop the system [VG01].

This thesis focuses on the design metrics such as timeliness, QoC, and extensibility.
The following sections describe in detail these design metrics.

16 Introduction

1.3.3.1 Timeliness

Although real-time applications are characterized by a deadline which has to be met,
the timeliness of a control system is also the result of metrics such as delay and jitter
[Kop11, But11].

The delay, also referred to as response time, is the time elapsed between the ending and
starting of an action [But11]. Thus, the delay of a task is the time elapsed between when
it becomes ready for execution and when it is executed; and the worst-case response
time of a task is defined as its maximum delay [But11]. Similarly, the delay of a flow
is the time elapsed between when it started its transmission from the talker node, and
when it is received in the listener node; and the maximum delay of a flow is referred to
as the worst-case delay.

Jitter is the deviation from the true periodic timing of an event, e.g., a task execution
and a flow transmission [But11]. It can be associated with the start time, the end time,
and the duration of an event. It is also associated either among all instances or two
consecutive instances. The predictability of a system is affected by the number of
factors that impact the delay variations is minimized, i.e., when the jitter is low [But11].

To this end, an FCP having a real-time behavior must be configured such that all the
actions of the system (e.g., task execution and flow transmission) are highly predictable
[Kop11], including the delays that affect the actions meeting their deadlines and the
jitter that affects the delay variation.

1.3.3.2 Quality-of-Control

A control application deals with the control of a dynamical system by driving it to the
desired state. The control application samples the state of the dynamical system (using
sensors), calculates the deviation from the desired state, calculates an appropriate con-
trol signal for driving the deviation to zero (using the control process), and applies the
control signal (using actuators) [OY02]. Fig. 1.6 shows a simple control application,
where Y is the current state of the system, R is the desired state, E is the deviation from
the desired state, K is the control process, U is the control signal, W is disturbances,
and X is the input to the dynamical system.

While designing the control process, for finding the suitable control law and tuning it,
several parameters such as the damping ratio, the phase margin, and the gain margin
(see [OY02] for more details) have to be determined. These parameters affect the
accuracy and rapidity of the control application, in opposite directions. The trade-off
between accuracy and rapidity of the controller, is called the Quality of Control (QoC)

1.3 System and Application Models 17

Figure 1.6: Schematics of a control application [BP21a]

(which is used interchangeably to mean “control performance”), see [Cer03] for more
details.

The QoC of a control application is associated with its rise-time Trise, peak-time Tpeak,
settling-time Tsettling and steady-state error. The rise-time Trise is defined as the time
takes for the output response to reach 90% of the input value. The rise-time shows how
fast the controller can react to the disturbances exerted to the dynamical system. The
peak response is defined as the highest output response the controller reached before
the desired value. The peak plays an important role in the robustness of the controller
against disturbances. The settling-time Tsettling is defined as the time takes for the
output response to reach 98% of the input value. The settling-time shows how fast
the controller can reach to the desired state. The steady-state error shows the minimum
deviation of the controller output response from the desired state. It shows the accuracy
of the controller. Fig. 1.7 shows the step-response of a sample control loop where these
associated parameters are depicted.

Nevertheless, the QoC can also be impacted by the implementation of the control ap-
plication and the changes in runtime due to the discrete time nature of the real-time
systems.

A control application is typically implemented as periodic real-time tasks doing com-
putation and exchanging messages whose periods depend on the dynamical system.
Analyzing the bandwidth of the closed-loop dynamical system returns an interval from
which the task periods can be chosen [AW97], see Sect. 2 for more details. The shorter
the period, the faster the controller is able to respond to the disturbances, the larger the
phase margin (resulting in a better QoC), and the more computational power is required
(which is a bottleneck on real-times systems where the resources are constrained).

Additionally, the task timing is another source that impacts the QoC. The task timing
refers to (1) the delay between the sampling task and the actuation task, and (2) jitter in
the task execution and the message exchange. The former directly decreases the phase

18 Introduction

Figure 1.7: Step response of a sample control loop [BCP20]

margin of the controller [OY02], leading to worse QoC, whereas the later’s effects on
the controller are less obvious to analyze.

The various aspects of the QoC can be captured in a cost function. A common choice
[SLSS96] is to use a quadratic cost function of the form

J =
∫

∞

0

(
xT (t)Q1x(t)+uT (t)Q2u(t)

)
dt, (1.1)

where the weighting matrices Q1 and Q2 tell how much deviations in the different
states x(t) and the control output u(t) should be penalized. By proper tuning of the cost
function, the desired transient and steady-state behavior can be achieved in the control
design. The same cost function can also be used to evaluate the performance of the
controller under non-ideal circumstances. A larger value of the cost J then means that
the response is more sluggish or more oscillatory, typically increasing the settling time
of the system.

However, the calculation of the QoC is possible via a simulation of the control behavior.
Thus, several tools such as Jitterbug [LC02], JitterTime [CPBM19], and TrueTime
[HCÅ02] are proposed to simulate the control behavior.

Jitterbug calculates the QoC assuming a fixed or a random jitter applied to inputs and
outputs of the control function. Additionally, it can be used to design controllers con-
cerning the stability margin. JitterTime calculates the QoC assuming a given schedules
that capture the timing of control flow transmission and control task execution. Also,
it can be employed to analyze the sensitivity of a control function to delay and jitter.

1.4 Systems Engineering Decision Tasks and Related Work 19

TrueTime simulates the execution of a control application based on a given schedule
tables, and analyzes the control output.

1.3.3.3 Extensibility

Applications often need updates over the time due to the changes in their environment,
e.g., design goals, machines they control, and the infrastructure [RLL94], the need to
update security polices, and the need for improved functionalities. In safety-critical
areas, it is costly to re-design the system architecture and/or change the configuration,
because this often requires costly verification, validation and certification. The solution
is to design an architecture and/or configuration for evolvability [RLL94], i.e., meet-
ing the current applications’ requirements and accommodating future changes to the
applications. However, evolvability also comes with costs. The effective evolvable
architecture is the one that adapts to the changes with a reasonable cost [IM94].

In this thesis, we aim for a specific type of evolvability, i.e., extensibility which is the
capability of extending a solution for future upgrades [BFG+95]. The FCP, in this case,
is designed for hosting hard real-time applications and envisioned to enable upgrades.
The upgrades are assumed to accommodate dynamic Fog applications and add future
critical control applications.

To this end, extensibility is formulated as the maximum action a schedule (that cap-
tures the timing of actions, such as tasks or messages) can accommodate for a new
action within a certain period [WCP+05, ZYS+09]. Thus, the extensibility for tasks
aims at maximizing the serviceable execution time for new independent tasks, and the
extensibility for flows aims maximizing the serviceable transmission time for new in-
dependent flows. Having a prior knowledge on the specification of the new tasks and
flows, the schedules can be optimized for extensibility [WCP+05, ZYS+09, PEPP04].

However, in this thesis we assume that there is no prior knowledge on the specifications
of the dynamic Fog applications, and the extensibility is defined in a way that provides
general solutions independent of the new applications’ specifications.

1.4 Systems Engineering Decision Tasks and Related
Work

The goal when engineering a system is to deliver an implementation that accomplishes
the objectives set by the stakeholders, including those objectives associated with the

20 Introduction

creation, production, and disposal of the system [BM16]. Thus, identifying the stake-
holders and their objectives is the first phase in systems engineering [BM16]. These
objectives address the full life cycle of the system, including the design, integration,
and management of the system, resulting in a set of requirements for decision making.

The main systems engineering phases, considering the decision-making tasks, are as
follows [BM16]:

• Conceptual Design covers defining the base subsystems, identifying a suitable
technology for a subsystem, and reviewing the existing hardware and software
for the chosen technology.

• Preliminary Design deals with specifying the physical architecture, defining the
required functions, allocating functions to resources, and identifying the valida-
tion and test structure.

• Full-Scale Design means specifying the details of each component, defining the
configuration of each component, and identifying the items that need to be man-
ufactured.

• Integration and Qualification covers planning tests, preparing equipment and
facilities for testing, implementing the activities.

• Product Refinement is related to identifying the components that need to be im-
proved, specifying the technology needed for improving a component, deciding
on the refinement of a component.

We can distinguish between design-time and runtime decision-making. Most of the de-
cisions are made at design-time, interchangeably called “offline decision making”, i.e.,
before the release of the system to the market [MSMB11]. However, many application
areas require the flexibility to adapt to changing situations [McC96], thus making a de-
cision at runtime is a necessity in these areas. In addition, recovery from failures may
involve runtime decision-making on how to mitigate them.

Traditional control systems are engineered using design-time decision-making due to
safety assurance considerations [GK19]. Certification of safety-related systems re-
quires pre-release evidence that the safety risks have been identified and the appropri-
ate mitigation measures have been implemented [GK19]. However, novel Industry 4.0
applications need adaptable and flexible implementations to meet dynamic demands.
Therefore, the Fog-based implementations should be evolvable, allowing both compu-
tation and communication to be reconfigured to address changing needs and to decrease
costs and resource usage [PRGS18].

1.4 Systems Engineering Decision Tasks and Related Work 21

Hence, in the context of the Fog-based systems envisioned in this thesis, we consider
that the decisions related to the configuration of critical control applications (that are
statically allocated to FNs) are performed at design-time, aiming to guarantee their
timeliness and dependability requirements. The design-time decision tasks investigated
by this thesis are: (1) determining the partitions for isolating the mixed-criticality tasks,
(2) mapping the tasks to FNs and to the cores of the FN, (3) scheduling tasks of appli-
cations on cores of the platform, and (4) synthesizing the GCLs for message in TSN.
These decisions optimize several metrics such as schedulability, QoC, and extensibility.

The configuration decisions related to the dynamic Fog applications (that migrate across
FNs of the FCP) are performed at runtime. Examples of these runtime decisions, are:
where to deploy these applications (on which FN), on which core of the FN to execute
these applications (implemented as tasks), how to schedule tasks of these applications
to execute, which route their messages to take, and how to schedule flows of these ap-
plications for transmission. In this thesis, we consider the following runtime decision
tasks: (1) placing the tasks to FNs and to the cores of the FN, (2) determining slacks
for scheduling tasks to run, and (3) determining slacks for scheduling flows to transmit.

In the next sections, the related work to these design tasks is presented.

1.4.1 Related Work

The related work is split into four subsections, addressing the main decision tasks con-
sidered.

1.4.1.1 Task Scheduling and Mapping, and Partitioning

The problem of task scheduling and mapping has been a well-studied topic within the
real-time community, and different scheduling algorithms have been proposed [But11,
BLAC05, Kop11, Mal09, SSL89]. For example, in [LT01], a fuzzy model is proposed
for scheduling real-time tasks with imprecise deadlines and processing times. The
model focuses on the optimal priority assignment to tasks which are then scheduled
using EDF algorithm [But11].

Researchers have also proposed task scheduling algorithms for distributed systems
hosting critical applications [CSB90, AS99, CSE14, SWP90]. In [THM02], the au-
thors have proposed a heuristic approach for achieving the minimum execution time
for critical tasks. In this approach, tasks are prioritized based on the upward rank value
to achieve the earliest finish time. The work in [KJ09] proposes using Simulated

22 Introduction

Annealing to maximize the throughput via minimizing makespan and communication
cost, maximizing CPU utilization, and reducing the runtime.

There is also much work on optimizing task and mapping schedules. For example,
in [OA09], the authors propose a genetic algorithm for optimizing task and mapping
schedules for the shortest scheduling length and balanced workload of cores. The pro-
posed algorithm employs the task duplication technique to overcome the overhead for
communication between the tasks. The work in [THM02] proposes a heuristic ap-
proach for task mapping and scheduling, aiming to achieve the minimum total execu-
tion time for tasks. In this approach the summation of upward and downward rank
values is used to prioritize tasks for scheduling. Energy optimization of task schedules
and mapping has also been addressed by researchers such as [YXC02]. In this work,
an Integer-Linear Programming (ILP)-based solution is proposed which first, maps the
tasks to the processors such that the opportunities for lowering the voltage for proces-
sors increases, and second, schedules the tasks on the mapped processors to achieve
the minimum voltage on processors.

The problem of scheduling mixed-criticality tasks separated with spatial and tempo-
ral isolation has been addressed by several researchers [WS12, MH18, JX07, BD13].
In this approach, partitions with different criticality levels separate the applications.
Resources are allocated to the partitions based on the criticality levels, which assures
resource availability and accessibility for critical applications with high priority. These
applications would have guaranteed dependability by promising separation. A presen-
tation of scheduling in mixed-criticality systems, which also considers partitioning, is
presented in [BD13]. For example, Tamas-Selicean et al. [TSP15a] propose a method
in which different Safety Integrity Levels (SILs) are assigned to the applications. In this
method, applications with the same SIL are mapped to a single partition. Each partition
is allocated several time slots on a processor to execute respective tasks. Concerning
this method, the approach can provide a partition for each control application.

The authors in [MEA+10] proposes an EDF-based algorithm that provides temporal
isolation among mixed-criticality tasks. The algorithm prioritizes the scheduling of
tasks based on their criticality level and uses the slacks that are redistributed in each
iteration for less critical tasks. The work in [LCSW14] proposes an algorithm based
on EDF for scheduling mixed-criticality tasks. The algorithm decides the scheduling
at design-time assuming the worst-case execution time of high criticality tasks. It also
reclaims the slacks caused by earlier termination of tasks, and schedules the less-critical
tasks at runtime. [SZ13] proposes an Early-Release EDF algorithm for scheduling
mixed-criticality tasks, which implements a slack reclaiming approach in scheduling
less-critical tasks. In the work, less-critical tasks are assumed to have multiple periods
with a minimum service requirement that is ensured by the largest period.

1.4 Systems Engineering Decision Tasks and Related Work 23

1.4.1.2 TSN Scheduling and Routing

There is a lot of work on routing and scheduling for TSN. Researchers have addressed
the routing and scheduling problem in TSN and have employed different approaches
for the optimization, such as heuristics, metaheuristics and mathematical programming,
e.g., ILP and Satisfiability Modulo Theories (SMT).

An example heuristic approach is [DN16], where the packets do not wait in switch
queues, called no-wait scheduling. The authors propose a Tabu Search metaheuristic
to optimize the flowspan which may become larger because of the no-wait scheduling,
and also let lower-priority traffic to use the residual bandwidth. Several scheduling and
routing solutions employing greedy-based heuristic approaches have also been pro-
posed [WSJD15, AHM18]. Wisniewski et al. in [WSJD15] propose a less resource
demanding approach that is possible to be implemented on industrial equipment on the
field floor. This method focuses on increasing the flexibility of static schedules. The
method can be integrated with discovery and auto configuration mechanisms allowing
the integration to the field level. The authors in [AHM18] aim to generate joint net-
work routing and communication scheduling that are fault-tolerant, within a reasonably
short time. The routing problem is implemented as an iterative path selection problem
starting from a fully connected network to the solution where costly links are removed.

Other heuristic solutions are also employed to solve such a scheduling and routing
problem. For example, the work in [AHG20] proposes a hybrid genetic algorithm
for the communication scheduling and network routing to find a near-optimal solu-
tion in a reasonable time, and also optimize the bandwidth to let more less-critical
traffic transmitted. The work in [PTO19] proposes a heuristic list scheduler, where
multi-cast traffic and application distribution are allowed, and bandwidth is optimized.
The same problem is addressed in [PO18] where a genetic algorithm is employed, and
in [GZRP18], where multiple traffic types are considered.

The use of SMT solvers for the communication scheduling is first proposed in [Ste10].
The author proposes a general method for off-line scheduling of communication and
uses the SMT solver as the back-end solver. The SMT-based model for TT-schedules
shows promising results and scales well with the problem size. Researchers have also
proposed using mathematical programming for TSN scheduling and routing [COCS16,
COSS17, SCS18a, SCS18b]. Craciunas et al. in [COCS16] propose an SMT model
for the traffic scheduling which generates solutions that are jitter-free and the number
of used port queues in the network switches is minimized. The authors also propose
frame and flow isolation constraints and evaluate them on several tests concerning the
run-time and number of used queues.

Craciunas et al. derive general traffic regulating constraints for SMT solvers in [COSS17],
which introduces windows in GCLs and maps the frames to them. Another SMT model

24 Introduction

based on “array theory encoding” is proposed in [SCS18a], where the authors see the
GCL windows as array elements, letting more relaxed scheduling with allowing jitter
and having fewer GCL entries. However, the implementation of the proposed method
shows resource demanding. The trade-off between the GCL length and run-time is
well studied in [SCS18b] where the authors review the TSN standards and present a
reference model for traffic scheduling in TSN.

The problem of scheduling and routing in TSN is extended for the benefit of other
applications. For example, in [PRCS16], the authors combine traffic scheduling and
network routing problems to achieve the minimum delay for AVB traffic. [MAS+18]
focuses on the message routing and scheduling of control applications to protect them
from instability. It proposes a method for routing and synthesizing GCLs with careful
consideration of the non-determinism of message, which guarantees worst-case mes-
sage delay and jitter that control applications can tolerate. The traffic scheduling com-
bined with task scheduling is studied in [CO16], where an SMT solver is employed
to schedule network messages and tasks on a networked computation platform which
is equipped with time-triggered network. The problem of increasing the resilience of
the control applications to malicious interference is addressed in [MAS+19], where the
authors aim to increase the resilience of the control applications to malicious interfer-
ence. Park et al. in [PSS19] propose a generic algorithm approach to schedule the
communication in TSN where preemption is allowed. The proposed algorithm shows
increased reliability in the generated solutions.

1.4.1.3 Configuration optimization for QoC

There is already much work on various topics related to Fog Computing, see surveys
such as [YLH+18, MKB18, MNY+18]. However, the work so far addresses quality-
of-service for applications that are not safety-critical and real-time. None of the ap-
proaches for resource management [AYY15] (that configure the FCP resources) are
applicable to configuration for QoC. Thus, the QoC for control applications in the Fog
is still an open issue. Nevertheless, there is much useful work in the literature that
tackles the problem of degradation of control applications [ZHY16, ZSWY17, JX07].

Researchers propose several approaches (such as temporal and spatial separation of
control tasks, virtualization of PLCs, scheduling of control tasks, co-design of control
applications) that guarantee non-functional properties of control applications [SSS17,
ZBP01, WS12, MH18]. The presented approaches are well studied and categorized into
a category for platform configuration and a category for the integration of applications.
Good performance for control applications will be ensured if both the applications and
the platforms are configured.

The platform configuration aims to ensure the resource allocation to control applica-

1.4 Systems Engineering Decision Tasks and Related Work 25

tions and protecting their execution from interrupting by less-critical applications. This
is achieved by separation and isolation of applications regarding their criticality levels,
see Sect. 1.4.1.1. On the other hand, the integration of the applications in the platform
affects their functional and non-functional properties. The co-design of control appli-
cations configure them at the integration level to achieve the highest performance. The
co-design approach takes the platform characteristics into account while designing the
application to have good integration with the platform.

There has been several much work in the area of co-design of control and real-time
[BI07, XABC17, MYV+04, PYKL11, BPZ02, SSS17, ZDN17] which has tackled the
design of controllers and scheduling of the control tasks with respect to the control
performance. The co-design procedure involves designing control applications such
that the controller is robust against degradation due to the scheduling of the tasks. Co-
design and scheduling concerning QoC for control applications are proposed in the
seminal work of Seto et al. [SLSS96]. The authors optimize the period of control
applications concerning the QoC and schedulability of the tasks.

Chwa et al. [CSL18] propose a co-design and scheduling method to maximize QoC for
control applications. The authors assign a sampling period, and a maximum number
of consecutive deadline misses as parameters for each task concerning system stability.
Then, the tasks are scheduled concerning the parameters without compromising system
stability and also with efficient use of resources. Samii et al. [SCEP09] present an
approach in which a controller is synthesized for each plant, and the control tasks are
scheduled concerning the priority of the tasks. In this work, the scheduling is based
on the cost of control function, which aims to consider the maximum QoC for all
the control applications. The same approach concerning co-design and scheduling of
control applications is used in [MSZ11]. A similar co-design approach is presented by
Cervin et al. [CEBÅ02]. In this work, the scheduler uses feedback from execution time
and also feed-forwards the workload along with the cost of control to achieve the best
QoC. Besides, control task parameters such as periods are changed with the feedback
from execution time. The approach can compensate the impact of jitter on the QoC.
In the work [RHS97], a heuristic algorithm is used to derive the periods and deadlines
of the tasks, and end-to-end response of the control loop. The assigned parameters are
assessed in a simulation that schedules and executes the tasks.

Another co-design approach is considered in [SGM+16]. The proposed method gets
feedback of delay and jitter in the execution of tasks from the scheduler and feeds it
to the control applications. The controllers take the feedback and adjust the control
outputs to compensate for the delay and jitter impact and to maximize the QoC. The
feedback from the task scheduler is also used to predict the jitter and delay.

The performance of a control application is evaluated by measuring various param-
eters such as settling time, rise time, overshoot, offset error, etc. Various computa-
tional methods have been introduced to evaluate the performance of a control applica-

26 Introduction

tion [SR61, Ell66, BBC17]. Furthermore, related work has also investigated the im-
pact of the virtualization of control applications (also in Cloud Computing) [GITJ14,
CSM16, GMS+15].

The problem of QoC analysis and schedulability has also been addressed in [ÅCES00,
XCÅ16, CEBÅ02]. In the proposed approaches, the task scheduler schedules the tasks
concerning the QoC of control applications. In the work by Schneider et al. [SGMC12],
the QoC measurement is embedded in the task scheduler with allowed preemption.
The scheduler is capable of handling mixed-criticality applications as well. Mahmoud
et al. [MH18] use an optimization algorithm to derive timing constraints of control
tasks, such as the task periods, to achieve maximum QoC for the control applications
concerning the schedulability of the control tasks.

In [TG11], a feedback scheduling framework is developed to schedule control tasks
such that the QoC is maximized for control applications and to adjust workload con-
straints. The QoC measurement is embedded in the task scheduler. The scheduler gets
delay and jitter feedback to change the period of the tasks concerning the QoC and
workload management. The same approach is used in [SGAN+16] to schedule tasks
concerning the QoC with feedback from scheduling. In this work, the period of tasks is
changed regarding the feedback. Eker et al. [EHÅ00], propose a similar method. The
method uses feedback from the scheduler to assign the period of control tasks. The pe-
riod assignment provides good control performance along with optimizing the resource
allocation out the tasks. Cha et al. [CJK16] propose a method for scheduling of control
tasks which determines the deadline and period of the tasks for achieving maximum
QoC. The method optimizes the QoC of the control applications and resource utiliza-
tion. In the approach presented in [XCÅ18], the task scheduler guarantees bounded
delay and jitter in the execution of the control application while the approach guar-
antees that the control application is still stable in the presence of bounded delay and
jitter.

The control performance is not only affected by the scheduling of tasks but also affected
by the scheduling of messages in the network. On one hand, researchers have addressed
the configuration of communication aiming at increased control performance [WS12,
HZ19, Son09], but very few work addresses TSN. On the other hand, there is much
work on routing and scheduling for TSN, but none considers the QoC.

Only a few of the works concerning the scheduling of control tasks consider Deter-
ministic Ethernet, such as TSN [MAS+18]. For example, [MAS+18] focuses on the
routing and scheduling of messages of control applications in Deterministic Ethernet
to protect them from instability. The authors propose the control of the queue gates
status via GCLs with careful consideration of the non-determinism of messages. The
proposed method lacks TSN-specific features, which makes it difficult to implement
the results and uses an SMT formulation that cannot optimize the solutions and does
not scale for large problem sizes. Other initial investigations in [MAS+18, BZP20]

1.4 Systems Engineering Decision Tasks and Related Work 27

address the QoC and consider the particularities of TSN but use a simplified model for
control applications.

1.4.1.4 Configuration Optimization for Extensibility

There has already been much work on designing for evolvability and extensibility
in computing systems such as [GRS96, RLL94, RRW+03] aiming to enable future
upgrades and changes for the real-time systems. However, extensibility for mixed-
criticality systems is still an open problem. Since these systems host safety-critical
applications, any changes in the system configuration requires re-certification [KZ09].
Nevertheless, there is much work in the literature that targets extensibility for mixed-
criticality systems that separates applications with different criticality levels and pro-
vides static configuration for high-critical applications.

Pop et al. [PEPP04] propose an incremental scheduling algorithm for embedded sys-
tems which aims at facilitating applications with hard deadlines. This approach con-
siders a system with tasks that have already started and generates extensible schedules
for adding specific future tasks considering that the existing tasks should be disturbed
as little as possible. In this work, the authors use the idle time slots of the schedules in
order to provide extensibility. For the evaluation, an extensibility metric is defined as
the distribution of the idle time slot profiles in the schedules concerning the future task
sets.

Optimizing schedules for extensibility has been addressed in [ZYS+09, WCP+05] with
different benefits. The approach presented in [ZYS+09] targets robust task scheduling
in distributed systems concerning the changes in task requirements. In this work, the
notion of extensibility is used for robustness. The extensibility metric is defined as the
weighted sum of each task’s execution idle time over its period. Zheng et al. [WCP+05]
propose a mathematical modeling approach for extensible scheduling to accommodate
additional tasks. In this work, the extensibility metric is defined as the maximum ex-
ecution time a schedule can accommodate for a new independent task with a certain
period. This definition distributes the idle time among all tasks and targets all varia-
tions of future task sets, i.e., no prior specification of future tasks is required.

Guo et al. [GGZ+12] propose a method based on ILP that decides the mapping of
mixed-criticality applications to the cores of a computing platform used in automotive.
The method is able to calculate and optimize solutions for extensibility. The authors
also propose a formal and quantitative definition of extensibility that they call “flexi-
bility”.

The authors in [BKA+20] propose an extensible scheduling algorithm for critical ap-
plications in an FCP. The proposed algorithm employs a heuristic approach that pro-

28 Introduction

vides well-distributed slacks in the schedules of high-critical applications, which can
be used for scheduling future critical applications. The work in [WHL+19] focuses on
scheduling messages in TSN networks in automotive where dynamic messages with
less-criticality are needed to be scheduled with ones of high criticality (that e.g., con-
trol engine); and optimizing the schedules to host more dynamic messages.

[MWTP+13] proposes an approach based on Mixed Integer-Linear Programming (MILP)
and Genetic Algorithms that aims to map the applications to the processing elements,
separate the mixed-criticality applications using partitioning, and schedule tasks and
messages of the applications. The approach considers several objectives for optimiz-
ing the solution, including extensibility. To this end, the extensibility is formulated
as the distribution of slacks in the schedules. Similarly, Zho et al. [ZZZ+13] propose
a MILP-based approach that uses the worst-case response time analysis to decide on
the task allocation, the signal to message mapping, and the assignment of priorities
to tasks and messages. Although the approach focuses on minimizing latency, it can
optimize solutions for maximizing slacks that can be used for accommodating future
applications.

1.5 Thesis Overview and Contributions

During my Ph.D. studies I have published and submitted the following articles:

• M. Barzegaran, A. Cervin, and P. Pop, “Towards quality-of-control-aware
scheduling of industrial applications on fog computing platforms,” In Pro-
ceeding of the Workshop on Fog Computing and the IoT. ACM, pp. 1–5, 2019.
[BCP19]

• A. Cervin, P. Pazzaglia, M. Barzegaran, and R. Mahfouzi, “Using JitterTime to
analyze transient performance in adaptive and reconfigurable control sys-
tems,” In Proceeding of IEEE International Conference on Emerging Technolo-
gies and Factory Automation. pp. 1025-1032, 2019. [CPBM19]

• M. Barzegaran, A. Cervin, and P. Pop. “Performance Optimization of Control
Applications on Fog Computing Platforms Using Scheduling and Isolation,”
IEEE Access, vol. 8, pp. 104085-104098, 2020. [BCP20]

• M. Barzegaran, N. Desai, J. Qian, K. Tange, B. Zarrin, P. Pop and J. Kuusela.
“Fogification of electric drives: An industrial use case,” In Proceeding of
IEEE International Conference on Emerging Technologies and Factory Automa-
tion. Vol. 1, pp. 77-84, 2020. [BDQ+20]

1.5 Thesis Overview and Contributions 29

• M. Barzegaran, B. Zarrin, and P. Pop. “Quality-of-control-aware scheduling
of communication in TSN-based fog computing platforms using constraint
programming,” In Workshop on Fog Computing and the IoT, Schloss Dagstuhl-
Leibniz-Zentrum für Informatik, pp. 1-4, 2020. [BZP20]

• P. Paul, B. Zarrin, M. Barzegaran, S. Schulte, S. Punnekkat, J. Ruh, and W.
Steiner, “The FORA Fog Computing Platform for Industrial IoT,” In Infor-
mation Systems, Elsevier, vol. 98, pp. 101727, 2021. [PZB+21]

• M. Barzegaran, V. Karagiannis, C. Avasalcai, P. Pop, S. Schulte and S. Dustdar,
“Towards Extensibility-Aware Scheduling of Industrial Applications on Fog
Nodes,” In Proceeding of IEEE International Conference on Emerging Technolo-
gies and Factory Automation, pp. 67-75, 2020. [BKA+20]

• I. Murturi, M. Barzegaran and S. Dustdar, “A Decentralized Approach for De-
termining Configurator Placement in Dynamic Edge Networks,” In Proceed-
ing of IEEE International Conference on Cognitive Machine Intelligence, pp.
147-156, 2020. [MBD20]

• M. Barzegaran, N. Reusch, L. Zhao, S. Craciunas, and P. Pop. ”Real-Time
Guarantees for Critical Traffic in IEEE 802.1Qbv TSN Networks with Un-
scheduled End-Systems,” In arXiv, 2021. [BRZ+21]

• M. Barzegaran and P. Pop, “Communication Scheduling for Control Perfor-
mance in TSN-Based Fog Computing Platforms,” In IEEE Access, vol. 9, pp.
50782-50797, 2021. [BP21a]

• M. Barzegaran and P. Pop. “Extensibility-Aware Fog Computing Platform
Configuration for Mixed-Criticality Applications”, Submitted to IEEE Trans-
actions on Services Computing, 2021. [BP21b]

• M. Barzegaran, N. Desai, J. Qian and P. Pop, “Electric Drives as Fog Nodes
in a Fog Computing-based Industrial Use Case,” Submitted to IET Journal of
Engineering, 2021. [BDQP21]

• J. Qian, M. Barzegaran, and P. Pop “Decomposing Deep Training Solutions
on Fog Computing Platforms,” To be submitted to ACM/IEEE Symposium on
Edge Computing, 2021. [QBP21]

This thesis consists four of the listed articles as: [BCP20] in Chapter 2 (Paper A),
[BP21a] in Chapter 3 (Paper B), [BDQP21] in Chapter 4 (Paper C), and [BP21b] in
Chapter 5 (Paper D). The contributions of the selected papers are described in the fol-
lowing subsections.

30 Introduction

1.5.1 Paper A: Performance Optimization of Control Applications
on Fog Computing Platforms Using Scheduling and Isolation

This paper addresses mixed-criticality applications characterized by their safety crit-
icality and time-dependent performance, which are virtualized on an FCP. We use
partitioning and static-cyclic scheduling to provide isolation among mixed-criticality
tasks and to guarantee their timing requirements. The temporal and spatial isolation is
enforced via partitions, which execute tasks with the same criticality level. We consider
that the tasks are scheduled using static cyclic scheduling.

We are interested in determining the mapping of tasks to the cores of the FNs, the as-
signment of tasks to the partitions, the partition schedule tables, and the tasks’ schedule
tables, such that the QoC for the control tasks is maximized and we meet the timing
requirements for all tasks, including tasks with lower-criticality levels. We are also
interested in determining the periods for control tasks to balance the schedulability
and the control performance. We have proposed a Simulated Annealing metaheuristic,
which relies on a heuristic algorithm for determining the schedules and partitions, to
solve this optimization problem.

Compared to the related work, the main contributions of this paper are as follows.
We have taken into account the virtualization typically used in FCPs, which results in
the use of partitions to separate mixed-criticality functions. Our method considers the
partitioning and we have proposed a heuristic to determine the assignment of tasks to
partitions. The method captures a range of periods for control applications that can
be used to implement their tasks, determines the periods of control tasks to trade-off
QoC and schedulability, and considers the preemption of tasks to make static schedules
more flexible. In addition, we also consider a realistic model of control applications and
provide accurate measure of QoC which simulates the behavior of a control application,
handling realistic scenarios.

1.5.2 Paper B: Communication Scheduling for Control Performance
in TSN-based Fog Computing Platforms

This paper focuses on real-time control applications that are implemented using FCPs
and modeled as a set of real-time flows. We are interested to synthesize the GCLs for
messages such that the QoC of control applications is maximized and the deadlines of
real-time messages are satisfied. We have proposed a Constraint Programming (CP)-
based solution to this problem, and developed an accurate analytical model for QoC,
which, together with a metaheuristic search employed in the CP solver can drive the
search quickly towards good quality solutions. We have evaluated the proposed strategy
on several test cases including realistic test cases and also validate the resulted GCLs

1.5 Thesis Overview and Contributions 31

on a TSN hardware platform and via simulations in OMNET++.

Compared to the literature, the main contributions of this paper are as follows. We for-
mulate the ST scheduling for QoC as an optimization problem, and propose a scalable
CP-based solution to solve it. Our CP formulation considers all the relevant constraints
of TSN, e.g., frame isolation, forwarding delay, resulting in realistic schedules that
have been validated via simulations in OMNET++ and on a TSN hardware platform.
We consider a more realistic model of control applications and provide more accu-
rate measure of QoC compared to previous work, based on JitterTime. JitterTime uses
time consuming simulations of the control application behavior, and hence they cannot
be integrated into a CP solver since the search will not scale. Thus, we proposed a
novel analytical model for the QoC evaluation within the CP formulation. In addition,
we have used a metaheuristic search strategy in the CP-solver to quickly obtain good
quality solutions, enabling us to handle large test cases.

1.5.3 Paper C: Extensibility-Aware Fog Computing Platform Con-
figuration for Mixed-Criticality Applications

In this paper, we consider that critical control applications and Fog applications share
an FCP. Critical control applications are implemented as periodic hard real-time tasks
and messages and have stringent timing and safety requirements, and require safety
certification. Fog applications are implemented as aperiodic tasks and messages and
are not critical. We formulate an optimization problem for the joint configuration of
critical control and Fog applications, such that (i) the deadlines and QoC of control
applications are guaranteed at design-time, (ii) the configuration is extensible and sup-
ports the addition of additional future new control applications without requiring costly
re-certification, and (iii) the design-time configuration together with the runtime Fog
resource management mechanisms, can successfully accommodate multiple dynamic
responsive Fog applications. We evaluate our approach on several test cases assum-
ing scenarios for hosting both Fog applications and future critical control applications.
The results show that our approach generates extensible schedules which enables FNs
to handle Fog applications with a shorter response time and a larger number of future
control applications.

The contributions of this paper are as follows. We motivate the need for a novel con-
figuration optimization approach for mixed-criticality applications running on an FCP.
We assume that the platform uses partitioning to enforce the spatial and temporal isola-
tion between applications with different criticalities. We use a hierarchical scheduling
model that can accommodate multiple scheduling policies, targeting the different time-
criticality requirements of applications. The critical control applications are scheduled
using static cyclic scheduling (i.e., they are time-triggered) and the resources of the Fog

32 Introduction

applications are allocated at runtime via fixed-priority servers that are dimensioned at
design-time jointly with the critical application configurations. We consider that the
critical control applications use ST for their flows, implemented via IEEE 802.1Qbv,
which defines a Time-Aware Shaper (TAS) mechanism that enables the scheduling of
flows based on a global schedule table. The flows of the Fog applications use Strict Pri-
ority (SP) flows that are sent with lower priority in the gaps of the ST traffic schedule
tables.

We propose a CP-based optimization strategy to synthesize such optimized configura-
tions. At design-time, the configurations consist of decisions on the mapping of critical
control tasks to the cores of the FNs, the routing of critical control flows, the schedule
tables for critical control tasks and flows, the slack in these schedule tables to increase
their flexibility, and the period and budget of the fixed-priority servers that allocate
resources at runtime to the Fog applications. At runtime, our approach handles the mi-
gration of Fog tasks to the FNs that have resources for their execution, the scheduling
of Fog tasks on the servers and of flows on TSN.

1.5.4 Paper D: Electric Drives as Fog Nodes in a Fog Computing-
based Industrial Use Case

As one of the main components in industrial applications, electric drives control electric
motors and record vital information about the respective industrial processes. Devel-
oping electric drives as FNs within an FCP, brings new offerings such as programma-
bility, analytics and connectivity increasing their added value. In this paper, we use
the FORA Fog Computing Platform reference architecture to implement electric drives
as FNs, which we call “fogification”. We have designed our fogified drive architecture
and its components using AADL. The design process was driven by high-level require-
ments that we have elicited. We have used the fogified drive architecture to implement
an industrial conveyor belt use case where electric drives are the key components and
evaluated the architecture. We have evaluated the fog-based use case design on several
Key Performance Indicators (KPIs). The KPIs were used for evaluating our proposed
fog-based drive design, showing its advantages over the current drive architecture.

In this paper, our contributions are as follows. We propose a new design for electric
drives as FNs using the FORA FCP reference architecture from [PZB+21] and model
the fogified drive architecture using AADL. Additionally, we implement a realistic in-
dustrial application that uses electric motors to drive conveyor belts using the proposed
fogified drive architecture. We identify the Fog-based drive requirements to drive the
design process. We use the Fog-based drives to develop a solution for our use case, and
propose several KPIs, which are used to evaluate the Fog-based solution.

CHAPTER 2

Paper A: Performance
Optimization of Control

Applications on Fog
Computing Platforms Using

Scheduling and Isolation

In this paper, we address mixed-criticality applications characterized by their safety
criticality and time-dependent performance, which are virtualized on a Fog Computing
Platform (FCP). The FCP is implemented as a set of interconnected multicore com-
puting nodes, and brings computation and communication closer to the edge of the
network, where the machines are located in industrial applications. We use partitioning
and static-cyclic scheduling to provide isolation among mixed-criticality tasks and to
guarantee their timing requirements. The temporal and spatial isolation is enforced via
partitions, which execute tasks with the same criticality level. We consider that the
tasks are scheduled using static cyclic scheduling. We are interested in determining the
mapping of tasks to the cores of the fog nodes, the assignment of tasks to the partitions,
the partition schedule tables, and the tasks’ schedule tables, such that the Quality-of-
Control for the control tasks is maximized and we meet the timing requirements for
all tasks, including tasks with lower-criticality levels. We are also interested in de-

34
Paper A: Performance Optimization of Control Applications on Fog

Computing Platforms Using Scheduling and Isolation

termining the periods for control tasks to balance the schedulability and the control
performance. We have proposed a Simulated Annealing metaheuristic, which relies on
a heuristic algorithm for determining the schedules and partitions, to solve this opti-
mization problem. Our optimization strategy has been evaluated on several test cases,
showing the effectiveness of the proposed method.

2.1 Introduction

We are at the beginning of a new industrial revolution, i.e., Industry 4.0, which is under-
pinned by a digital transformation that will affect all industries. Industry 4.0 will bring
increased productivity and flexibility, mass customization, reduced time-to-market, im-
proved product quality, innovations and new business models. However, Industry 4.0
will only become a reality through the convergence of Operational Technology (OT)
and Information Technology (IT), which use different computation and communication
technologies. OT consists of cyber-physical systems that monitor and control physical
processes that manage, e.g., automated manufacturing, critical infrastructures, smart
buildings and smart cities. These application areas are typically safety critical and
real-time, requiring guaranteed extra-functional properties, such as, real-time behavior,
reliability, availability, industry-specific safety standards, and security.

OT uses proprietary solutions imposing severe restrictions on the information flow. IT
such as Cloud Computing cannot be used at the edge of the network, where indus-
trial machines are located, and where very stringent extra-functional properties have
to be guaranteed [GVCL14]. Instead, a new paradigm, called Fog Computing, is en-
visioned as an architectural means to realize the IT/OT convergence. Fog Comput-
ing is a “system-level architecture that distributes resources and services of comput-
ing, storage, control and networking anywhere along the continuum from Cloud to
Things” [Ope21a]. With Fog Computing, communication devices, such as switches
and routers are extended with computational and storage resources to enable a variety
of communication and computation options (see Fig. 2.1).

Fog Computing will enable a powerful convergence, unification and standardization at
the networking, security, data, computing, and control levels. It will lead to improved
interoperability, security, more efficient and rich control, and higher manufacturing
efficiency and flexibility [BMNZ14]. The vision is to virtualize the control (which is
implemented as control tasks running on a Fog Computing Platform) and achieve the
same level dependability as the one taken for granted in OT. Several initiatives are
currently working towards realizing this vision [PML+19, HDNQ17].

The integration of computational and storage resources into the communication devices
is realized in the Fog Node (FN). In many applications, including industrial automa-

2.1 Introduction 35

Figure 2.1: Fog Computing platform. Boxes represent fog nodes, connected with each
other and to the Cloud; the thick lines are the network. Applications
(Apps) run in the fog and Cloud.

tion and robotics, several layers of FNs with differing computation, communication
and storage capabilities will evolve, from powerful high-end FNs to low-end FNs with
limited resources. Researches have started to propose solutions for the implementation
of FNs [BMNZ14, PML+19] and fog node solutions have started to be developed by
companies [PML+19, HDNQ17, TTT21].

An FN is equipped with computational resources that allows the execution of appli-
cations and it is connected to a larger data processing facility like a Cloud environ-
ment. Regarding computation, we assume that the control tasks are running in an Real-
Time Operating System using real-time scheduling policies (we consider static-cyclic
scheduling in this paper), and the control applications are separated in different par-
titions enforced using hardware-supported virtualization, based on hypervisors, such
as ACRN [ACR20] or PikeOS [KW07]. FNs could be connected to each others and
to the machines through a deterministic communication solution, such as IEEE 802.1
Time-Sensitive Networking (TSN) [IEE21b], see Fig. 2.1. Such a Fog Computing Plat-
form (FCP) allows to increase the spatial distance between the physical process and the
FN that controls it, allowing the control functions can be executed remotely on the FN.
However, the way the FCP is configured has an impact on the control performance of
the control applications.

Given a set of mixed-criticality applications and an FCP, we are interested to determine
an FCP configuration such that the Quality of Control (QoC) of control tasks is maxi-
mized and all the tasks meet their deadlines. Determining an FCP configuration means
deciding on the partitions, the mapping of tasks to the FNs and partitions, the schedule
table for tasks, the partition table for partitions, and the periods of control tasks. We do

36
Paper A: Performance Optimization of Control Applications on Fog

Computing Platforms Using Scheduling and Isolation

not address the scheduling of messages on the TSN network, which can be solved with
approaches such as [CSOCS16] that achieve low latency and zero jitter.

2.1.1 Contributions

This paper shows that when control becomes virtualized, implemented as tasks on an
FCP, the configuration of the FCP has a strong impact on the control performance. We
formulate the FCP configuration as an optimization problem, and we have proposed
a metaheuristic solution to solve it. Compared to the related work (see Sect. 2.7),
which has addressed the scheduling of tasks to maximize QoC, we also optimize the
partitioning, which is required in an FCP to provide isolation among mixed-criticality
applications, decide on the mapping of tasks to partitions, consider the preemption of
tasks to make static schedules more flexible, and determine the period of control tasks
to trade-off QoC and schedulability of non-control tasks. In addition, we also consider
a more realistic model of control applications and provide more accurate measure of
QoC compared to previous work, see Sect. 2.4.

2.1.2 Outline of the Paper

In the remainder of this paper, we give the models for application and architecture of
the system in Sect. 2.2. The problem is formulated in Sect. 2.3. We give an introduction
to control theory in Sect. 2.4. In Sect. 2.5, we present the details of our proposed opti-
mization strategy with an illustrative example. Our optimization approach is evaluated
in Sect. 2.6 on several test cases. The related work is covered in Sect. 2.7 and Sect. 2.8
concludes the paper.

2.2 System Model

This section presents the architecture and application models. Table.2.1 summarizes
the notations used in the system model.

2.2.1 Architecture Model

There have been several FN architectures proposed, and some of them are commer-
cially realized [PML+19, HDNQ17, YLL15, FOR21, TTT21]. A possible FN architec-

2.2 System Model 37

ture targeting mixed-criticality applications, is presented in Fig. 2.2. Such an architec-
ture is similar to several FN architectures prepared for industrial applications [PML+19,
TTT21]. We model the architecture as a set of FNs, denoted by N . Each FN, Ni ∈ N ,
has a set of cores Pi, and each core is denoted with Pj ∈ Pi. An example architecture
with two FNs is presented in Fig. 2.3. The FNs have respectively two and one cores.
Sensors and actuators are connected to FNs with network switches. The lines represent
network links.

Mixed-criticality applications sharing the same platform have to be isolated from each
other, otherwise a faulty lower-criticality task may interfere with a higher-criticality
task, leading to failure. We assume that the applications are isolated from each other
using spatial and temporal partitioning [Rus00], implemented via hypervisors such as
ACRN [ACR20], Xen [The21], PikeOS [KW07] or XtratuM [Uni21].

Table 2.1: Summary of notation

Symbol Fog Computing Platform (FCP)
N Set of all Fog Nodes
Ni(Pi) ∈N Fog Node (FN)
Pi Set of all cores in the Fog Node Ni
Pj ∈ Pi Core
P Set of all cores in the platform
∆ Set of all partitions
δi(Li,ξi) ∈ ∆ Partition
Li Criticality level of a partition
ξi Overhead time of a partition
V Set of partition tables
vi ∈ V Partition table
S Set of schedule tables
si ∈ S Schedule table
Γ Set of all applications
γi ∈ Γ Set of tasks of application γi
Fi Set of possible periods for an application
F The application mapping function to periods
τi(Di,Ti,Li,Ci) ∈ γ j Task
Di Deadline of a task
Ti Period of a task
Li Criticality level of the application γ j
Ci Set of WCETs for the application γ j
M The task mapping function to the cores
O The task assignment function to the partitions

38
Paper A: Performance Optimization of Control Applications on Fog

Computing Platforms Using Scheduling and Isolation

Figure 2.2: Fog node architecture. The software stack is running on a multicore, and
has, from bottom to top, a hypervisor, partitions running OSes, middleware
and tasks.

We denote the set of partitions with ∆. Each partition δi ∈ ∆, is characterized by a
criticality level Li. For example Li can represent the Safety Integrity Level (SIL) of
an application, which has values from 0, non-critical, to 4, highest criticality [Sto96].
A partition δi, scheduled on multiple cores, consists of several partition slices that are
time slots to which the processor is assigned for the partition. We assume that the par-
titions are statically scheduled via partition tables, denoted with V , (e.g, as used in Xen
or PikeOS), which allocate processing cores from an FN to partitions in partition slices.
A partition table repeats periodically with a system cycle. Switching among partition
slices imposes an overhead. This overhead depends on the computing platform, the
hypervisor, see [XXL+14] for a description of overheads in Xen, and may also depend
on the contents of the partition. For example in [ZSEP19], researchers assume that the
overhead is 5% of the maximumWorst-Case Execution Time (WCET) of the tasks allo-
cated to a partition. Our model is general, and assumes a partition-dependent overhead
denoted with ξi for each partition δi.

Real-time applications can be implemented with time-triggered or event-triggered schedul-
ing policies. In this paper, we assume that the scheduling policy is static cyclic schedul-
ing [But11] (also known as time-triggered scheduling), which has been shown to be
suitable for critical control applications. We will consider event-triggered scheduling
in our future work. The set of all schedule tables in the model are denoted with S.
A schedule table si ∈ S, captures the start and finishing time of tasks. We consider
that within a schedule table, a task may be split into several parts, similar to run-time
preemption in preemptive scheduling, but decided at design time. This has been shown

2.2 System Model 39

Figure 2.3: Example architecture with two FNs.

to improve flexibility, schedulability [Ves07] and QoC for control tasks [BCP19]. The
preemption threshold can be controlled by a parameter called macrotick, which speci-
fies the granularity of preemption [CSE14].

Fig. 2.4 shows an example of partition tables V and schedule tables S using a Gantt
chart. In this example, we assume that mixed-criticality applications with a total of ten
tasks are executing on two cores, which have four partitions ∆. All tasks in a partition
have the same criticality level. The partitions δ1, δ2, δ3, and δ4 have the criticality
level of respectively L1 = 1, L2 = 0, L3 = 3, and L4 = 2. The black lines represent the
overhead times of the partitions. The task scheduling is depicted with white rectangles
and the partition scheduling is depicted in colored rectangles.

2.2.2 Application Model

The set of all applications is denoted with Γ. An application is denoted with γi ∈ Γ and
composed of tasks τ j ∈ γi. Tasks may have data dependencies, which are modeled using
a Directed Acyclic Graph (DAG), where nodes are tasks and edges represent data flows
between the tasks. A data-dependent task is ready when all of its inputs have arrived.
A task produces its outputs when it terminates. For example, as will be discussed
in Sect.2.4.1, each control application is implemented as three data-dependent control
tasks: a sampling task, a task that implements the control algorithm and an actuator
task. Each task τi is periodic and has a period Ti, and a deadline Di. The deadline is
relative to the activation of the task. For each task τi, we know the set of WCETs Ci on
the cores, where it is considered for mapping. The WCETs may be impacted by shared
resources in a multicore, i.e., bus, memory, I/O. However, the problem of contention-

40
Paper A: Performance Optimization of Control Applications on Fog

Computing Platforms Using Scheduling and Isolation

Figure 2.4: Example partition tables and schedule tables: Ten tasks are scheduled on
two cores and mapped to four partitions.

aware scheduling is orthogonal to our work and we can use the techniques mentioned
in [ZSB+12] to account for the contention.

The mapping of tasks to the cores is modeled by using the functionM : τi−→P, where
P is the set of all cores in the platform. The system engineers may place constraints on
the mapping of tasks, which can be handled by our model. The tasks are also assigned
to partitions for execution. The assignment of the tasks to the the partitions is denoted
by O : τi→ ∆, where ∆ is the set of all partitions in the system. The criticality level of
an application γi is captured by its SIL Li, see Sect. 2.2.1. Tasks can be assigned only
to partitions that have the same criticality level.

We assume that tasks which have data dependencies share the same period. For a
control application γi, we are given a set of possible periods Fj. We use the function F
to capture the period Ti = F(γi) ∈ Fi of a control application γi. Our optimization
strategy will select the period of the control application.

We show in Fig. 2.5 an example application model consisting of three applications.
The criticality level, deadline and period of each task are depicted in the figure. The
WCET of each task is also given considering a given mapping to a core. The values
for deadlines, periods, and WCETs are in milliseconds. The application γ2 is a control
application with three tasks with precedence constraints. The application γ2 has a set
of possible periods F2.

2.3 Problem Formulation

We formulate the problem as follows: Given (i) a set of applications Γ and (ii) a set of
FNsN , we want to determine a configuration Ψ consisting of: (1) a set of partitions ∆,
(2) a mappingM of the tasks to cores, (3) an assignment O of tasks to the partitions,

2.3 Problem Formulation 41

Figure 2.5: Example application model with three applications.

(4) the periods of control applicationsF , (5) the partition tables V , and (6) the schedule
tables S such that:

1. Maximum control performance is achieved for the critical control appli-
cations: We seek a solution which has the best overall QoC for all the control
applications. This is realized by minimizing the function J̄ captured by Eq. (2.7),
see Sect. 2.5.3.

2. The deviation among the QoC of control applications is minimized: We
would like to balance the deviation σJ , captured by Eq. (2.8), see Sect. 2.5.3.

3. Temporal isolation is achieved among tasks with different criticality levels:
Each task τi and its assigned partition δ j, captured with the functionO, share the
same criticality level.

4. The deadlines for all tasks are met: Given that all the tasks are periodic and
real-time, each task τi should completed before its deadline Di.

42
Paper A: Performance Optimization of Control Applications on Fog

Computing Platforms Using Scheduling and Isolation

2.4 Control Theory

The mathematical relation between the inputs, outputs and state variables of a dynami-
cal system around an equilibrium point can be modeled as a linear differential equation
and denoted by a state-space representation [OY02]

ẋ(t) = Ax(t)+Bu(t)+w(t),

y(t) =Cx(t)+Du(t),
(2.1)

where the vectors x, u, w and y denote the state, the control input, the disturbance
input, and the measured output respectively, and where A, B, C and D are matrices of
appropriate sizes. The input–output relationship can equivalently be described by a
transfer function G(s) [OY02]. A Feedback Control System (FCS), or simply a control
application, samples the output of the dynamical system y(t), calculates the deviation
from the desired output r(t) (in this paper generically assumed to be zero), and drives
the deviation to zero by applying an appropriate control signal u(t).

2.4.1 Feedback Control System

An FCS can be implemented as a three task application. The source task, let’s call it
τ1, samples the dynamical system by using sensors. The task may process the captured
data from sensors. The second task, let’s call it τ2, uses the output of the task τ1 to
calculate the control signal. The task τ2 utilizes various methods for the calculation and
may be engaged with time-consuming calculation [OY02]. The implemented method
for calculating the control signal is called the control law. The sink task, let’s call it τ3,
uses the output of the task τ2 to exert the control signal using the connection with the
actuators. A simple FCS has an analogue to digital converter for the source task τ1, a
control law τ2, and an analogue to digital converter for the sink task τ3. Fig. 2.6 shows
a simple FCS.

A control application is typically a periodic application with a known period. The
period should be chosen in relation to the speed of the controlled system, and the shorter
the period, the faster the controller is able to respond to the typical disturbances. On the
other hand, a too short period causes high utilization of resources and leads to problems
in resource-constrained computing platforms. A common rule of thumb [AW97] is
to determine the period of the application based on the bandwidth of the closed-loop
system. The closed-loop transfer function H(s) is calculated by

H(s) =
G(s)K(s)

1+G(s)K(s)
, (2.2)

where G(s) and K(s) are the transfer functions of the dynamical system and the feed-
back controller respectively [OY02]. The sampling period T is then chosen in the

2.4 Control Theory 43

Figure 2.6: A simple FCS.

interval
0.2
ωb
≤ T ≤ 0.6

ωb
, (2.3)

where ωb is the 3 dB bandwidth of H(s) [AW97].

As discussed, choosing the period from the interval has two impacts; first, stability
and robustness of controller and last, resource utilization and schedulability. Our op-
timization strategy will determine the periods F to strike a compromise between their
impacts.

The task timing is a source of additional disturbances for a control application. Ideally,
the controller should execute without timing variations (jitter) and with as short delay
as possible between the sensor task and the actuator task. A time delay has the direct
consequence of decreasing the phase margin of the control system, which means worse
performance and less robustness. Jitter is the deviation from the true periodic timing
of an event, and its effects on the control performance are less obvious to analyze. In
a control application, the event can be the execution of a task or the receiving of a
network message.

The execution of a task is a periodic event of which instances are characterized by start
time, duration and end time. Jitters can be associated with the start time, the end time
and the duration. It is also associated either among all instances or two consecutive
instances. The data packets to/from actuators/sensors are also periodic events which
are characterized by send-time, transmit-time and receive-time which are vulnerable
to jitter. While we are ignoring the communication in this paper, delays and jitter are
only applied to tasks. The jitter of a task is either measured among all the instances
(absolute) or two consecutive instances (relative). We categorize jitters as follows:

44
Paper A: Performance Optimization of Control Applications on Fog

Computing Platforms Using Scheduling and Isolation

Figure 2.7: Step response of a sample control loop.

• Start Jitter of a task is the maximum deviation of the arrivals of instances of a
task.

• Release Jitter of a task is the maximum deviation of the worst-case delay be-
tween the arrivals of instances of a task and their release times.

• End Jitter of a task is the maximum deviation of the release time of instances of
a task.

• Input–Output Jitter is the maximum deviation of the worst-case delay between
sampling from a cyber-physical system and exerting the actuation to it among
the instances of tasks in a control loop. This type of jitter covers both timing of
communication links form and to sensors and actuators, and the execution of the
control tasks.

2.4.2 Control Design

While designing an FCS, there is a trade-off between accuracy and rapidity of the
control loop. The trade-off is called the control performance. It is determined by
several parameters such as the damping ratio, the phase margin and the gain margin,
see [OY02] for more details. These parameters help control engineers to find the suit-
able control law and tune the control law to get the intended performance. The accuracy
and rapidity is depicted in the transient and steady state response of the control loop.
Fig. 2.7 shows the transient and steady state step-response of a sample control loop
with notation of associated parameters (rise-time Trise, peak-time Tpeak, settling-time
Tsettling and steady state error).

The rise-time Trise is defined as the time takes for the output response to reach 90%
of the input value. The rise-time shows how fast the controller can react to the dis-
turbances exerted to the dynamical system. The peak response is defined as highest

2.4 Control Theory 45

out-put response the controller reached before the desired value. The peak plays an
important role in the robustness of the controller against disturbances. The settling-
time Tsettling is defined as the time takes for the output response to reach 98% of the
input value. The settling-time shows how fast the controller can reach to the desired
state. The steady-state error shows the minimum deviation of the controller output
response from the desired state. It shows the accuracy of the controller.

The various aspects of the control loop performance can be captured in a cost function.
A common choice [SLSS96] is to use a quadratic cost function of the form

J =
∫

∞

0

(
xT (t)Q1x(t)+uT (t)Q2u(t)

)
dt, (2.4)

where the weighting matrices Q1 and Q2 tell how much deviations in the different states
and the control input should be penalized. By proper tuning of the cost function, the
desired transient and steady-state behaviour can be achieved in the control design. The
same cost function can also be used to evaluate the performance of the controller under
non-ideal circumstances. A larger value of the cost J then means that the response is
more sluggish or more oscillatory, typically increasing the settling time of the system.

Given a linear system description by Eq. (2.1) and a quadratic cost function in Eq. (2.4),
an optimal controller known as a linear-quadratic-Gaussian (LQG) controller can be
calculated [OY02]. The above formulation is given in continuous time, but the LQG
design methodology can also handle a large number of other conditions, such as sam-
pled design [AW97] and compensation for time delays [Krs09]. The Jitterbug toolbox
[LC02], utilized in this paper to design control applications, has support for designing
an optimal sampled LQG controller that compensates for either a fixed or a random
input–output delay with a given probability distribution.

2.4.3 Calculation of Control Performance

In this paper, we use JitterTime [CPBM19] to calculate the QoC with the cost func-
tion J, defined in Eq. (2.4). JitterTime takes the schedule tables S and partition tables V
and calculates the cost J. The tables S contain the starting and finishing time of the
tasks. JitterTime simulates the behaviour of a control application with the given start-
ing and finishing times of control tasks and evaluates the behaviour using the quadratic
cost function in Eq. (2.4).

The cost J decreases under the circumstances in which the Input-Output Jitter of a
control application (defined in Sect. 2.4.1) as well as the end-to-end response of the
control application decreases. The end-to-end response of a control application is the
delay between the sampling from a cyber-physical system and exerting the actuation to
it. In our problem, the delay is between the starting of the sensor task to the finishing

46
Paper A: Performance Optimization of Control Applications on Fog

Computing Platforms Using Scheduling and Isolation

of the actuator task. More information about the inner workings of JitterTime can be
found in [CPBM19].

2.5 Solution

The problem we are addressing in this paper is interactable. Finding a solution to our
problem involves deciding on the schedule tables, which has been shown to be Non-
deterministic Polynomial time (NP)–complete in the strong sense [Ull75]. For such
problems, exact optimization methods such as Brunch & Bound, Integer Linear Pro-
gramming and Constraint Programming have exponential efforts. Hence, we propose
a Simulated Annealing (SA)-based metaheuristic [BK05] to solve this optimization
problem. Metaheuristics do not guarantee finding the optimal solution, but have been
shown to find good quality solutions for a wide range of practical applications [BK05].

We have decided to divide the problem such that the schedule synthesis is performed
separately within the SA using a scheduling heuristic. List Scheduling [Sin07] is a
typical heuristic that derives good quality solutions, but it cannot easily handle appli-
cations with multiple periods and preemption. Instead, inspired by [CSE14], we have
proposed a scheduling heuristic extended from [MPC19] based on the simulation of an
Earliest Deadline First (EDF) algorithm, which can handle both multiple periods and
preemption.

An overview of our proposed Fog Computing Platform Configuration (FCPC) opti-
mization strategy in shown in Alg.1. The SA decides the period of the control applica-
tions, the mapping of tasks to cores in the FCP. The assignment of tasks to partitions
and the partition and schedule tables are decided by our EDF-based Scheduling and
Partitioning Heuristics (SPH, called in Alg.1). SA also decides parameters that influ-
ence the scheduling in SPH, such as task offsets Θ and relative deadlines Φ used for
the EDF simulation.

SA is presented in Sect. 2.5.1 and SPH in Sect. 2.5.2. The objective function used for
the optimization is presented in Sect. 2.5.3. SA uses design transformation to explore
the search space, and these are presented in Sect. 2.5.4. Sect. 2.5.5 has an example that
illustrates how our proposed FCPC strategy works.

2.5.1 Simulated Annealing

SA (line 7–17 in Alg. 1) starts from an initial solution (line 4) and iterates to search the
solution space (line 7–17). The initial solution assigns the period of each control task

2.5 Solution 47

to the minimum value in its set of periods F , assigns the offsets Θ of tasks to zero, and
sets the relative deadline Φ of all tasks to their deadline values. The initial mappingM
is obtained by a greedy approach i.e., each task is mapped iteratively to the core that has
the smaller utilization in that iteration. The initial assignment of tasks to partitions O
is defined such that each application has a partition for its criticality level on each core
where the application has a task mapped. The partition tables V and schedule tables S
are obtained with our Scheduling and Partitioning Heuristic (SPH), called inside the
InitialSolution function.

Algorithm 1 Ψ =<M,O,S,V,F >= FCPC(Γ,N)

1: i← 0
2: t← Tstart
3: Θ←{0};Φ←{Di}
4: Ψ← InitialSolution(Γ,N)
5: J← JitterTime(S,V,Γ)
6: Ω← CostFunction(J,S)
7: repeat
8: <Mi, ,Fi,Θi,Φi >← Neighbor(Ψ,Γ,N)
9: < Si,Vi >← SPH(Mi,Fi,Θi,Φi,Γ,N)

10: Ji← JitterTime(Si,Vi,Γ)
11: Ωi← CostFunction(Ji,Si)
12: λ ←Ωi−Ω

13: if λ < 0 or random[0,1)< Prob(λ , t) then
14: Ψ←Ψi;Θ←Θi;Φ←Φi
15: end if
16: t← t×α

17: until stopping criterion is True
18: return Ψ =<M,O,S,V,F >

In each iteration, SA uses design transformations (or moves) to generate neighboring
solutions starting from the current solution Ψ (line 8). The generated neighborhood
is evaluated with the cost function Ω, defined in Sect. 2.5.3. In each iteration, the
algorithm compares the cost Ωi of the generated neighborhood with the cost Ω of the
current solution (line 13).

SA accepts a solution if the cost is improved. SA may also accept a worse-quality
solution (in the hope to better explore the solution space) with a certain probability:

Prob(λ , t) = e−
λ
t , (2.5)

where λ is the difference between cost of the generated neighborhood and cost of the
current solution (line 12). The probability to accept worse solutions decreases with time

48
Paper A: Performance Optimization of Control Applications on Fog

Computing Platforms Using Scheduling and Isolation

according to a ”cooling schedule”, where t is the current temperature. SA starts from
an initial temperature Tstart (line 2), and cools down in each iteration at the rate of α

(line 16). The search terminates when a stopping criterion has been satisfied (line 17),
e.g., no improvement after a given number of iterations, a temperature of zero or a time
limit was reached.

2.5.2 Scheduling and Partitioning Heuristic (SPH)

Our proposed Scheduling and Partitioning Heuristic (SPH) is presented in Alg.2 and
takes as input a mapping M, a set of periods F , a set offsets Θ, a set of relative-
deadlines Φ, the set of applications Γ, and the set of FNs N . The main idea of SPH
is to create first a schedule table for the tasks considering the mapping fixed by SA,
and then to post-process the schedule table to derive the partitions and the allocation
of tasks to the partition slices. Thus, SPH has two parts, the first part schedules the
tasks (line 2–10) and the second part (line 11–13) groups the tasks together to form
partitions. During the construction of the schedule table in the first phase, the SPH
does not consider the partitioning.

As mentioned earlier, to derive the schedule tables S, we perform at design time an EDF
simulation. The output of that simulation is the set of schedules S. In the simulation,
we consider that the duration of each task is its WCET. With EDF, a task has the
highest priority (and will be scheduled on its respective core) if its deadline Di comes
earlier considering the current time. The outcome S of a simulation is controlled by Θ,
the tasks offsets (their initial earliest activation) and Φ, the relative deadlines used for
each task in the simulation. These are modified for each task τi by our SA in Alg. 1, in
the ranges Di to Ti for the offsets Θ and 0 to Di for the relative deadlines Φ. Our EDF
simulation allows preemption (a higher priority task that is ready for execution may
interrupt a lower priority task) considering the given macrotick, and can handle data
dependencies, i.e. a task will not start before its predecessors have finished executing.

The EDF simulation is performed for the duration of a hyperperiod H (which is also the
system cycle), defined as the Least Common Multiple of all the task periods (line 1).
SPH starts by creating a queue Q jobs with jobs of the tasks in Γ that have to run during H
(line 2). Note that in our implementation these jobs are created on the fly, based on
events occurring during the simulation. These events are generated by our simulation
at design time, as part of the simulation used to derive the schedules. The simulation
is performed in lines 4–10. Because SPH is run in each iteration of SA, we have
optimized its implementation for speed, efficiency, simulation events and skipping only
to events that have relevance for building the schedule tables S. In the following, we
explain how the simulation works in principle.

The simulation takes those jobs ∂ form Q jobs that are ready to execute at the time t

2.5 Solution 49

Algorithm 2 <O,S,V >= SPH(M,F ,Θ,Φ,Γ,N)

1: H← HyperPeriod(Γ)
2: Q jobs← CreateJobs(Γ,H)
3: t← 0
4: repeat
5: for all ∂ in Q jobs ready at t do
6: ∂H ← GetHighestPriority(∂)
7: X ← Schedule(∂H)
8: end for
9: t← NextEvent(Q jobs, t)

10: until t < H
11: χ ← GroupTasks(X ,Γ)
12: S ← GenerateScheduleTable(χ)
13: V ← GeneratePartitionTable(χ)
14: return <O,S,V >

(line 5) and sorts them based on their priority (line 6). The job which has the earliest
deadline and its precedent jobs are arrived, has the highest priority. The high-priority
job is denoted with ∂H . If the priority of ∂H is higher than the currently executing
job, SPH preempts it and schedule ∂H instead (line 7). The simulation is stored in X .
SPH determines the next time in which a job becomes ready (line 9), considering the
remainder of jobs in Q jobs and the macrotick parameter mentioned in Sect. 2.2.1, which
controls the granularity of preemption.

The final part of SPH post-processes the simulation data structure X . SPH groups the
time-wise consecutive jobs which have the same criticality level to form partitions, and
also delays the tasks to insert the required task switching (in case preemptions were
introduced) and partition overheads ξi (line 11). See Sect. 2.5.5 for an illustration
on how our heuristic works to create partitions by grouping tasks. SPH extracts the
schedule tables S from the simulation χ (line 12), and the partition tables V (line 13).

2.5.3 Cost Function

In this section, we define the weighted cost function Ω in Eq.(2.6), used by our FCPC
optimization strategy. The function has three terms (QoC, deviation of QoC and task
schedulability constraint, respectively) and takes the QoC of control applications J and
the schedule tables S as input. The QoC optimization is controlled by the weights β1
and β2, whereas β3 is a penalty value for the case when task deadlines are missed. The
weights allow the system engineer to control the search for schedulable solutions that
optimize QoC. Larger values for β1 and β2 will drive the search to optimize QoC,

50
Paper A: Performance Optimization of Control Applications on Fog

Computing Platforms Using Scheduling and Isolation

whereas a larger value for β3 will drive the search faster to schedulable solutions.

Ω = β1× J̄+β2×σJ +β3×Λ (2.6)

The control performance of control applications is captured by the first term. Assuming
m number of control applications, the average QoC for the applications is

J̄ =
∑

m
i=1 Ji

m
, (2.7)

where, Ji is the QoC for a control application γi which is calculated by JitterTime and
its value is mapped to the range [0,1]. The range of cost performance is from 0, for
the best-performance, to 1, for the worst-performance, e.g., which is unstable. J̄ is
normalized to the same range.

The second term captures the deviation among the QoC of the control applications,
and is defined in Eq. (2.8). Concerning the range of J, the range of variation is from

0, for the equally distributed QoC of control applications, to
√

m−1
m < 1 for m control

applications when their performance costs are highly-deviated.

σJ =

√
∑

m
i=1 |Ji− J̄|

m
(2.8)

The last term is the function Λ, which is a constraint that checks for deadline violations
for all the tasks in the schedule table. Λ is also normalized, and starts form 0, for no
deadline violations, to 1, for the case in which all the jobs have missed their deadlines.

2.5.4 SA Design Transformations

As mentioned earlier, SA decide the mapping M of tasks to the core, assignment O
of tasks to partitions, and periods F of control applications. The SA also varies the
offsets of tasks and EDF deadline to create different scenarios for the EDF simulation,
generating various schedules. SA uses moves to explore the solution space by gener-
ating randomly neighborhoods of the current solution. SA randomly selects one of the
moves and applies it to randomly selected tasks to generate the neighborhood in each
iteration. The moves are:

• Swap Tasks: swaps the mapping of two selected tasks.

2.5 Solution 51

• Period Selection: randomly chooses a period Ti from the given set of periods Fi
for the selected control task τi.

• Deadline Adjustment: randomly selects a relative deadline Φ (used in the EDF
simulation in SPH) in the range from Di to Ti.

• Offset Adjustment: the offset Θ of the selected task τi is selected randomly in
the interval from 0 to Di.

To drive the search faster towards the schedulable solution with increased QoC, we
encourage SA to pick tasks that need special attention, e.g., because they missed their
deadline or they impact QoC. This is achieved by sorting the tasks based on the cri-
teria we want to address (schedulability, QoC) and selecting randomly tasks based on
probability density function that are skewed towards the head of the sorted list.

2.5.5 Illustrative Example for FCPC

Let us present an example illustrating how FCPC works. We have two cores, P1 and P2
and four applications, including two control applications γ1 and γ4. The applications
have 12 tasks in total. Each control application is controlling an inverted pendulum in
the upright position, with its process modeled as

G(s) =
200

s2 +400
. (2.9)

Each of the control applications has three tasks which are respectively sensor, LQG
controller, and actuator task, see Sect. 2.4.1. The controller tasks, τ2 in the control ap-
plication γ1, and τ9 in the control application γ4 are LQG controllers which are designed
using Jitterbug [LC02]. Table 2.2 shows the applications, tasks and their details.

FCPC starts with an initial configuration which comes from the initial solution (Sect. 2.5.1,
line 4 in Alg. 1). SPH uses this initial configuration and creates an EDF simulation
(Alg. 2). We take the stored simulation X (line 7 in Alg. 2), group the task to create
partitions (line 11 in Alg. 2) and generate a schedule table (line 12) and a partition
table (line 13). Let us explain how partitions are create, starting from the schedule in
Fig. 2.8a, which is the result of EDF simulation stored in X . SPH post-processes the
schedule from left to right, and, if two tasks share the same criticality levels, it group
them into same partition. Let us call this configuration CONF/S (from configuration
with separation) depicted in Fig. 2.8b, which shows a part of the schedule table starting
from 0 ms to 40 ms. We use different colors to highlight the partitions in Fig. 2.8. For

52
Paper A: Performance Optimization of Control Applications on Fog

Computing Platforms Using Scheduling and Isolation

Table 2.2: Illustrative example applications.

Application Tasks L WCET
(ms)

T
(ms)

D
(ms)

γ1 τ1 3 2 F1 12
τ2 3 1 F1 12

F1 = {6,8,10,12} τ3 3 1 F1 12
γ2 τ4 1 5 20 20

τ5 1 2 10 10
γ3 τ6 2 1 5 5

τ7 2 1 10 10
γ4 τ8 3 0.5 F4 12

τ9 3 1 F4 12
F4 = {5,8,10,12} τ10 3 0.5 F4 12
γ5 τ11 0 1 12 12

τ12 0 1 9 9

example, we create four partitions, denoted with δ4, δ5, δ6 and δ7 on core P2, with
criticality levels of Lδ4 = 1, Lδ5

= 2, Lδ6
= 3 and Lδ7 = 0.

The overhead times for these partitions are determined as 100 µs, 50 µs, 100 µs and
50 µs, respectively (we use the approach from [ZSEP19], which considers the partition
overheads of 5% of the largest task WCET in the partition). Regarding the task switch-
ing overheads, we use the values measured in [CSE14]. SPH may delay the tasks to
apply these overheads, hence several instances of tasks may miss their deadlines. For
example, the task τ3 will miss its deadline at t = 16 ms for about 550 µs.

Let us consider that CONF/S is the current solution driving the search performed by SA
in Alg. 1, and this SA perform a ”Swap Task” design transformation in line. 8, which
results in swapping the mapping of tasks τ4 and τ5. This will result in the configura-
tion from Fig. 2.8c, which we call CONF/SM (from configuration with separation and
mapping), which is feasible, i.e., there are no deadline misses. As a consequence of the
task swapping, not only mapping of the tasks to the cores are swapped but also their
assignments to the partitions, since they have the same criticality level. In this configu-
ration, the control application γ1 experiences maximum I/O jitter (12.5% of its period,
which is 8 ms) and the control application γ4 has no I/O jitter (release and start jitters
are seen at t = 10 ms and t = 16 ms). The cost of control is calculated by JitterTime,
and the average of the two control applications is 0.09642 and the deviation is equal
to 0.0388. The cost function, calculated as in Eq. (2.6) considering a value of 1 for all
weights, has a value of 0.13522.

2.6 Experimental Evaluation 53

(a) Transformation without optimization and separation (CONF/U)

(b) Configuration considering separation without optimization (CONF/S)

(c) Valid configuration without optimization (CONF/SM)

(d) Optimized configuration (CONF/O)

Figure 2.8: Four different configuration for the applications in Table. 2.2; The black
lines show the overheads of the partitions: CONF/U has no temporal sepa-
ration; CONF/S has several deadline misses; CONF/SM is feasible and the
cost function value is 0.13522; CONF/O is the final solution which shows
77% improvement.

SA will accept the configuration in Fig. 2.8c as the current solution, since it improves
over Fig. 2.8b that had deadline misses (line 13 in Alg. 1). Let us assume that the
next design transformation is done by ”Period Selection”, e.g., by selecting the period
of 10 ms for tasks in the control application γ1. The resulted optimized configuration
(CONF/O) is depicted in Fig. 2.8d. The values of average QoC and the deviations
(terms one and two in Eq. (2.6)) are 0.0268 and 0.0033, respectively, resulting in a cost
function of 0.0301, which is an improvement of 77% over the CONF/SM in Fig. 2.8c

2.6 Experimental Evaluation

Our proposed optimization strategy, Fog Computing Platform Configuration (FCPC),
was implemented in C#, and all the experiments were run on a laptop with an i7 CPU at
3.0 GHz and 32 GB of RAM. We investigate the performance of our proposed method
on ten test cases, which have mixed-criticality tasks. The details of test cases are shown
in Table 2.3, where column 2 shows the total number of cores in the FCP, column 3

54
Paper A: Performance Optimization of Control Applications on Fog

Computing Platforms Using Scheduling and Isolation

Table
2.3:

E
valuation

results
forourproposed

optim
ization

Test
N

o.
TotalN

o.of
Total

TotalN
o.of

Ω
Ω

Ω
Ω

cases
of

C
ontrol

N
o.of

Tasksfor
C

riticality
of

for
for

for
C

ores
A

pplications
Tasks

levelof[0-4]
FC

PC
FC

PC
/M

FC
PC

/Q
FC

PC
/P

1
2

2
12

{1,2,2,1,6}
0,19

48%
N

otFeasible
60%

2
2

3
23

{3,2,5,4,9}
0,34

5%
N

otFeasible
N

otFeasible
3

2
2

17
{2,2,4,3,6}

0,21
5%

N
otFeasible

33%
4

2
2

23
{2,1,7,6,7}

0,29
13%

N
otFeasible

13%
5

3
3

32
{1,4,8,8,11}

0,21
39%

N
otFeasible

55%
6

3
3

31
{2,3,9,7,10}

0,22
85%

N
otFeasible

50%
7

3
4

33
{4,4,8,7,12}

0,26
15%

N
otFeasible

10%
8

4
4

44
{4,6,11,9,14}

0,20
29%

N
otFeasible

72%
9

5
6

54
{7,5,14,10,18}

0,21
21%

N
otFeasible

N
otFeasible

10
6

7
63

{6,7,16,12,22}
0,24

21%
N

otFeasible
46%

2.6 Experimental Evaluation 55

shows the total number of control applications, column 4 shows the total number of
tasks, and column 5 shows the total number of tasks having a particular criticality
level, 0 to 4. Each test case has multiple control applications: Each control application
has three control tasks (see Sect, 2.4.1) and the control task which implements the
controller is a LQG controller designed with Jitterbug to control a plant using one of
the three different processes which are defined in Eq. (2.9), Eq. (2.10), and Eq. (2.11),

G(s) =
300

s2−200
, (2.10)

G(s) =
100

s2 +300
. (2.11)

The tasks in each test case represent real-time tasks with different criticality levels and
can be run on any of the cores. Tasks with the same criticality level are mapped to the
same partition and overheads are applied to each partition slice.

The results of evaluation are presented in Table 2.3. The Ω columns show the cost func-
tion of test cases for each solution. The results obtained by running FCPC on each test
cases are reported in column 6 using the value of the cost function Ω. We have set the
weights β1, β2 and β3 to 0.45, 0.1 and 1.0, respectively. The weights were determined
experimentally to guide the search faster towards solutions with optimized QoC. β1 can
be set by analyzing the stability of the control applications with Jitterbug and choosing
a value that drives the search towards stable control. Jitterbug also reports the phase
margins (smaller phase margin means larger sensitivity) of the applications and β2 is
set to allow a larger deviation from the mean QoC if there is a large variation among
the phase margins of the applications. A β3 value of 1.0 is a relatively large penalty
value considering that the cost function terms are in the range [0,1]. To determine the
ability of FCPC to improve the QoC measured by Ω, Table 2.3 also reports the results
obtained by three variants of FCPC, as follows:

• FCPC/M: does not optimize the mapping of tasks and uses the mapping deter-
mined in the initial solution, as explained in Sect. 2.5.4.

• FCPC/Q: does all the optimizations of FCPC but does not use the QoC in the
cost function (the first two terms), hence it optimizes only for schedulablity,
ignoring the control performance.

• FCPC/P: generates solutions with our proposed strategy without considering
period selection for critical control tasks. The period of control tasks are set to
their smallest value.

56
Paper A: Performance Optimization of Control Applications on Fog

Computing Platforms Using Scheduling and Isolation

The other Ω columns show the value in terms of percentage in deterioration of the
cost function for FCPC/M, FCPC/Q and FCPC/P, respectively, compared to FCPC. A
larger cost function value, i.e., larger percentage deterioration, means a worse-quality
solution.

As we can see from Table 2.3, FCPC has been able to obtain feasible solutions for all
the test cases, i.e., all the tasks’ deadlines are satisfied and all the controllers are stable
and have good QoC. The average value of cost function Ω is 0.24 and the values are
not highly-deviated in all the test cases. We have used a time limit of 20 to 70 minutes
as a termination criteria for FCPC and its variants, depending on the size of the test
case.

When comparing FCPC with its variants that ignore certain optimization aspects, we
can see in the last three columns of Table 2.3 large percentage deterioration, or even
”unstable” control applications (shown with ”Not Feasible”) for nearly all the test
cases. For example, the results show that not considering QoC in FCPC/Q gives the
worst results, which demonstrates that the JitterTime-based QoC evaluation of solu-
tions needs to be used during the optimization of a FCP configuration. Otherwise, the
controllers become unstable even though the deadlines are not missed. Determining
the right period for the control applications is very important as we can see in case of
FCPC/P, where considering a single period results in control applications that are un-
stable and the degradation is high, on average 42% in all other cases. The results also
show the importance of mapping, since using in FCPC/M, the mapping determined by
the initial solution, the degradation is on the average 28%.

2.6.1 Realistic Test Case

We have evaluated the proposed optimization strategy on a realistic test case which
consists of 8 applications running on a fog node inside a vehicle. Future vehicles are
envisioned to be “fog nodes on wheels” [CBB17] as they integrate more and more
functions and become interconnected with each other.

The details of the test case are in Table 2.4. We have 8 applications running on a
dual-core fog node which include a drive-assistance application for radar-cruise con-
trol (application γ4). The car is modeled with a first-order transfer function and the
controller is a LQG speed controller which is design by Jitterbug. Application γ1 mon-
itors the engine, γ2 is a passenger comfort application that controls the climate, γ3 is
used for image analysis as part of driver-assistance functionality. We give the applica-
tions different critically levels, based on their importance, as presented in the table.

Our proposed optimization strategy has successfully scheduled all the tasks and decided
the task mapping to the partitions and cores. The results show that none of the tasks

2.7 Related Work 57

Table 2.4: Realistic test case

Application Tasks L WCET
(ms)

T
(ms)

D
(ms)

γ1 τ1 2 0.5 10 10
τ2 2 0.5 10 10
τ3 2 1 10 10

γ2 τ4 1 2 15 15
τ5 1 2 15 15
τ6 1 1.5 15 15
τ7 1 1 15 15
τ8 1 2 15 15

γ3 τ9 2 1 20 20
τ10 2 0.5 20 20
τ11 2 0.5 20 20
τ12 2 1 20 20
τ13 2 1.5 20 20
τ14 2 0.5 20 20

γ4 τ15 3 0.5 F4 24
τ16 3 2.5 F4 24
τ17 3 3 F4 24
τ18 3 1 F4 24
τ19 3 3 F4 24
τ20 3 1 F4 24

F4 =
{18,20,22,24}

τ21 3 0.5 F4 24

has missed its deadline. Furthermore, the mapping of tasks to the cores shows the core
utilization of 86.67% and 86.88% for the dual-core processor. We used JitterTime to
simulate the controller behavior and calculate the cost of control for the application
concerning the given cost function in 2.4.3 with the weights of 0.25, and 0.25 and 1
for β1, β2 and β3. The cost function has the value of 0.007.

2.7 Related Work

There is already much work on various topics related to Fog Computing [YLH+18,
MKB18, MNY+18]. Even though basic quality-of-service (QoS) for applications has
been addressed, the QoC for control applications in the fog is still an open issue. How-
ever, there is a lot of useful literature in works that tackle the problem of degradation

58
Paper A: Performance Optimization of Control Applications on Fog

Computing Platforms Using Scheduling and Isolation

of control applications [ZHY16, ZSWY17, JX07].

Researchers propose several approaches (such as partial and spatial separation of con-
trol tasks, virtualization of PLCs, scheduling of control tasks, co-design of control
applications) that guarantee extra-functional properties of control applications [SSS17,
ZBP01, WS12, MH18]. The presented approaches are well studied and categorized into
a category for platform configuration and a category for the integration of applications.
Good performance for control applications will be ensured if both the applications and
the platforms are configured.

Separation and isolation of applications regarding criticality levels ensure resource al-
location to control applications. Researchers propose spatial and temporal separation
to integrate mixed-criticality applications [WS12, MH18, JX07]. In this approach,
partitions with different criticality levels separate the application. Resources are allo-
cated to the partitions based on the criticality level, which assures resource availability
and accessibility for critical applications with high priority. These applications would
have guaranteed dependability by promising separation. A presentation of scheduling
in mixed-criticality systems, which also considers partitioning, is presented in [BD13].
For example, Tamas-Selicean et al. [TSP15a] propose a method in which different SILs
are assigned to the applications. In this method, applications with the same SIL are
mapped to a single partition. Each partition is allocated several time slots on a proces-
sor to execute respective tasks. Concerning this method, the approach can provide a
partition for each control application.

On the other hand, integration of the applications in the platform affects their functional
and extra-functional properties. The co-design of control applications configure them
at integration level to achieve the highest performance. The co-design approach takes
the platform characteristics into account while designing the application to have good
integration with the platform.

The QoC analysis and schedulability of the tasks are taken into account while designing
the control applications in [ÅCES00] and [XCÅ16]. In the proposed approaches, the
task scheduler schedules the tasks concerning the QoC of control applications. Besides,
co-design is used to determine the period of tasks and design a robust and optimal
controller. Other researchers also focused on the co-design and scheduling of control
tasks to achieve the maximum QoC for control applications [WS12, MH18, JX07].
Co-design and scheduling concerning QoC for control applications are also proposed
in the seminal work of Seto et al [SLSS96]. The authors optimize the period of control
applications concerning the QoC and schedulability of the tasks.

Chwa et al. [CSL18] propose a co-design and scheduling method to maximize QoC for
control applications. The authors assign a sampling period, and a maximum number
of consecutive deadline misses as parameters for each task concerning system stabil-
ity. Then, the tasks are scheduled concerning the parameters without compromising

2.7 Related Work 59

system stability and also with efficient use of resources. Mahmoud et al. [MH18] use
optimization algorithms to derive a timing constraint of control tasks such as the task
period to achieve maximum QoC for the control applications concerning the schedula-
bility of the control tasks [RHS97]. In this work, heuristic algorithms are used to derive
the period of tasks, deadlines of the tasks and end-to-end response of the control loop.
The assigned parameters are assessed in a simulation that schedules and executes the
tasks.

Samii et al. [SCEP09] present an approach in which a controller is synthesized for each
plant, and the control tasks are scheduled concerning the priority of the tasks. In this
work, the scheduling is based on the cost of control function, which aims to consider
the maximum QoC for all the control applications. The same approach concerning co-
design and scheduling of control application is used in [MSZ11]. A similar co-design
approach is presented by Cervin et al. [CEBÅ02]. In this work, the scheduler uses
feedback from execution time and also feed-forwards the workload along with the cost
of control to achieve the best QoC. Besides, control task parameters such as period
are changed with the feedback from execution time. The approach can compensate the
impact of jitter on the QoC.

Task scheduling has a significant impact on the performance of control applications.
The QoC-aware scheduling reduces the degradation of control applications to some
levels based on the criticality of the application. Configuration of the platform at the
computation level, especially in the task scheduler guarantees good performance for
control applications. Barzegaran et al. [BCP19] have presented a heuristic approach
for scheduling of tasks and mapping them to the cores which maximizes the QoC of
control applications. The work also shows that allowing preemption in scheduling of
tasks improves the schedulability of tasks and QoC of control applications. The work
does not consider separation of mixed-criticality tasks which is covered in this paper,
and it also ignores the effect of control tasks periods on the schedulability, which is also
covered in this paper. Task period selection and cost function definition for the optimal
control behavior is based on the cost of the control. The scheduling aims to cover the
bounded jitter and latency regarding the stability margin of the control applications.
In the work by Schneider et al. [SGMC12], the QoC measurement is embedded in the
task scheduler with allowed preemption. The scheduler is capable of handling mixed-
criticality applications as well.

Another co-design approach is considered in [SGM+16]. The authors get feedback of
delay and jitter in the execution of tasks from the scheduler and feed it to the control
applications. The controller takes the feedback and adjusts the control output to com-
pensate the delay and jitter impact and to maximize the QoC. The feedback from the
task scheduler is also used to predict the jitter and delay. In [TG11], a feedback schedul-
ing framework is developed to schedule control tasks such that the QoC is maximized
for control applications and to adjust workload constraints. The QoC measurement is
embedded in the task scheduler. The scheduler gets delay and jitter feedback to change

60
Paper A: Performance Optimization of Control Applications on Fog

Computing Platforms Using Scheduling and Isolation

the period of the tasks concerning the QoC and workload management. The same ap-
proach is used in [SGAN+16], to schedule tasks concerning the QoC with feedback
from scheduling. In this work, the period of tasks is changed regarding the feedback.
Eker et al. [EHÅ00], propose a similar method. The method uses feedback from the
scheduler to assign the period of control tasks. The period assignment provides good
control performance along with optimizing the resource allocation of the task.

Cha et al. [CJK16] propose a method for scheduling of control tasks which determines
the deadline and period of the tasks for achieving maximum QoC. The method opti-
mizes the QoC of the control applications and resource utilization. In co-design ap-
proach presented in [XCÅ18], the task scheduler guarantees bounded delay and jitter
in execution of control application while the co-design approach guarantees that the
control application is still stable in the presence of bounded delay and jitter. In work
by Fan et al. [FQ12], a scheduling algorithm is proposed that can provide some degree
of isolation, which can host control applications. In this work, control applications can
be assigned to partitions to ensure the separation. The algorithm also maps the tasks to
the cores.

2.8 Conclusions and Future Work

In this paper, we have addressed the problem of configuring the mapping, partition-
ing, scheduling and periods of mixed-criticality tasks when implementing the applica-
tions on a Fog Computing Platform. The optimized solution has good and balanced
Quality-of-Control for critical control applications, ensuring the schedulability of all
real-time tasks, as well as spatial and temporal isolation for mixed-criticality tasks.
Our proposed strategy is based-on a Simulated Annealing metaheuristics, which uses
an Earliest Deadline First simulation.

We have evaluated this strategy on several test cases. As the results show, our proposed
optimization strategy successfully generates solutions which have good and balanced
Quality-of-Control for control applications considering temporal isolation for all the
test cases in comparison with the solutions that have ignored some of the optimization
criteria.

The successful virtualization of control, achieving the same control performance (and
dependability) as the one taken for granted in OT, is a crucial step towards the adoption
of Fog Computing in the industrial area. In our future work, we will consider the
effect of the communication; we will take into account the possibility of incremental
scheduling based on our proposed strategy, and we will also consider other optimization
techniques such as constraint programming to solve the problem.

CHAPTER 3

Paper B: Communication
Scheduling for Control

Performance in TSN-based
Fog Computing Platforms

In this paper we are interested in real-time control applications that are implemented
using Fog Computing Platforms consisting of interconnected heterogeneous Fog Nodes
(FNs). Similar to previous research and ongoing standardization efforts, we assume
that the communication between FNs is achieved via the IEEE 802.1 Time Sensitive
Networking (TSN) standard. We model the control applications as a set of real-time
flows, and we assume that the messages are transmitted using scheduled traffic that is
using the Gate Control Lists (GCLs) in TSN. Given a network topology and a set of
control applications, we are interested to synthesize the GCLs for messages such that
the Quality-of-Control (QoC) of control applications is maximized and the deadlines of
real-time messages are satisfied. We have proposed a Constraint Programming (CP)-
based solution to this problem, and developed an accurate analytical model for QoC,
which, together with a metaheuristic search employed in the CP solver can drive the
search quickly towards good quality solutions. We have evaluated the proposed strategy
on several test cases including realistic test cases and also validate the resulted GCLs
on a TSN hardware platform and via simulations in OMNET++.

62
Paper B: Communication Scheduling for Control Performance in

TSN-based Fog Computing Platforms

3.1 Introduction

We are at the beginning of a new industrial revolution (Industry 4.0), which will bring
increased productivity and flexibility, mass customization, reduced time-to-market, im-
proved product quality, innovations and new business models. However, Industry 4.0
will only become a reality through the convergence of Operational Technology (OT)
and Information Technology (IT), which are currently separated in a hierarchical pyra-
mid (Purdue Reference Model [Wil94]) and use different computation and commu-
nication technologies. OT consists of cyber-physical systems that monitor and control
physical processes that manage, e.g., automated manufacturing, critical infrastructures,
smart buildings and smart cities. These application areas are typically safety-critical
and real-time, requiring guaranteed non-functional properties, such as, real-time be-
havior, reliability, availability, safety, and security and often required to show com-
pliance to industry specific standards. OT uses proprietary solutions, imposing severe
restrictions on the information flow.

Instead, a new paradigm, called Fog Computing, is envisioned as an architectural
means to realize the IT/OT convergence in Industrial Internet of Things (IIoT) [BMZA12],
which cannot be realized using Cloud Computing. According to NIST, “Cloud com-
puting is a model for enabling ubiquitous, convenient, on-demand network access
to a shared pool of configurable computing resources [...] that can be rapidly pro-
visioned and released with minimal management effort or service provider interac-
tion” [MG+11]. The OpenFog IEEE standard defines Fog Computing as a “system-
level architecture that distributes resources and services of computing, storage, control
and networking anywhere along the continuum from Cloud to Things” [Ope21a]. We
define Edge Computing is as a new architectural paradigm in which the resources of an
edge server are placed at the edge of the Internet, in close proximity to cyber-physical
systems, mobile devices, sensors and Internet of Things (IoT) endpoints.

With Fog Computing, communication devices, such as switches and routers are ex-
tended with computational and storage resources to enable a variety of communication
and computation options. Fog Computing will enable a powerful convergence, uni-
fication and standardization at the networking, security, data, computing, and control
levels. It will lead to improved interoperability, security, more efficient and rich control,
and higher manufacturing efficiency and flexibility [BMNZ14]. The vision is to virtu-
alize the control (implemented as software tasks exchanging messages) and achieve the
same level dependability, i.e., non-functional properties such as reliability, timeliness
and security as the one taken for granted in OT, achieved via dedicated hardware and
software solutions.

The convergence of IT and OT will be supported by: the increased usage of IP-protocols,
e.g., standardized Deterministic Ethernet solutions from IEEE Time-Sensitive Net-
working (TSN) Task Group [IEE21b], upcoming 5G wireless standards [DMP+14],

3.1 Introduction 63

and interoperability standards such as OPC Unified Architecture (OPC UA) [MLD09],
all integrated into a Fog Computing Platform (FCP), see Fig. 3.1, which brings compu-
tation, communication and storage closer to the edge of the network. Several initiatives
are currently working towards realizing this vision [PML+19, HDNQ17].

The integration of computational and storage resources into the communication de-
vices is realized in the Fog Node (FN), see Fig. 3.1. In many applications, including
industrial automation and robotics, several layers of FNs with differing computation,
communication and storage capabilities will evolve, from powerful high-end FNs to
low-end FNs with limited resources. Researchers have started to propose solutions
for the implementation of FNs [BMNZ14, PML+19, PZB+21] and FN solutions have
started to be developed by companies [PML+19, HDNQ17, TTT21].

Regarding the communication infrastructure, today, industry uses mostly proprietary
protocols [GJF12] that lock customers into the product portfolio of individual product
vendors, impairing interoperability. However, industry is moving towards using stan-
dardized solutions to connect the FNs to each other and to the machines [PRGS18], i.e.,
IEEE 802.1 TSN [IEE21b], see Fig. 3.1. Such an FCP allows to increase the spatial
distance between the physical process and the FN that controls it, allowing the control
functions to be executed remotely on the FN. However, the way the FCP and, in partic-
ular, the TSN communication infrastructure is configured has an impact on the control
performance of the control applications. In our case, we consider high-end Fog Nodes
connected to industrial systems and placed at the edge of the network, similar to edge
servers, interconnected via TSN.

TSN consists of a set of amendments to the IEEE 802.1 Ethernet standard to provide
features useful for real-time and safety critical applications1. An FCP hosts applica-
tions of mixed-criticalties, which have different requirements, in terms of safety, time-
liness and control performance. TSN supports multiple traffic types, and hence, is suit-
able for mixed-criticality applications running on an FCP. Applications with tight tim-
ing constraints typically use Scheduled Traffic (ST) implemented via IEEE 802.1Qbv,
which defines a Time-Aware Shaper (TAS) mechanism that enables the scheduling of
messages based on a global schedule table. The scheduling relies on a clock synchro-
nization mechanism 802.1ASrev [IEE17], which defines a global notion of time. Thus
the devices are synchronized, and the global schedule is formed. Applications that need
bounded latency but do not have stringent latency and jitter requirements can use the
IEEE 802.1BA Audio Video Bridging Systems (AVB) traffic type. Best-Effort (BE)
traffic compliant with IEEE 802.3 Ethernet can be used for non-critical applications
that do not need timing guarantees. ST traffic has the highest priority, followed by
AVB and BE. AVB mechanisms are intended to prevent the starvation of lower priority
BE flows.

1The references for all sub-standards can be easily found via IEEE Xplore

64
Paper B: Communication Scheduling for Control Performance in

TSN-based Fog Computing Platforms

Figure 3.1: Fog Computing Platform: Boxes represent fog nodes, placed at the edge
of network where OT and IT converge, connected to each other and to the
Cloud in IT and to the industrial “thing" in OT, and running applications
(Apps). Thick lines are physical TSN links.

In this paper we address control applications virtualized on a distributed FCP, which are
implemented as tasks running on FNs that exchange messages over TSN. We assume,
similar to the related work, that the messages use the ST traffic type. In this context,
the scheduling of ST messages has a strong impact on the Quality of Control (QoC),
i.e., the control performance [BZP20]. Given the network topology of the FCP, the set
of mixed-criticality applications, for which we know their communication flows and
their routing, we are interested to synthesize the TSN ST communication schedules
such that the QoC is maximized and the mixed-criticality application requirements,
e.g., deadlines, are satisfied. We have proposed a Constraint Programming (CP)-based
solution for deriving the ST communication schedules. We have addressed the problem
of scheduling of tasks on an FCP for QoC [BCP20], which is orthogonal to the mes-
sage scheduling problem. However, to facilitate the integration of tasks and message
schedules, our CP implementation also aims at supporting the integration of tasks and
messages by creating space in the communication schedule timelines, where tasks need
to execute.

3.1.1 Contributions

The related work, discussed in Sect. 3.7, has shown that the communication synthesis
has a strong impact on control performance. TSN has become a de-facto standard in
several areas, including industrial applications. Although there has been much work

3.2 System Model 65

in scheduling ST traffic in TSN, very few researchers have addressed scheduling in
TSN for control performance [MAS+18, BZP20]. Compared to these works, the main
contributions of this paper are as follows. We formulate the ST scheduling for QoC
as an optimization problem, and propose a scalable CP-based solution to solve it. Our
CP formulation considers all the relevant constraints of TSN, e.g., frame isolation, for-
warding delay, resulting in realistic schedules that have been validated via simulations
in OMNET++ and on a TSN hardware platform. We consider a more realistic model of
control applications and provide more accurate measure of QoC compared to previous
work, based on JitterTime. JitterTime uses time consuming simulations of the con-
trol application behavior, and hence they cannot be integrated into a CP solver since
the search will not scale. Thus, we proposed a novel analytical model for the QoC
evaluation within the CP formulation. In addition, we have used a metaheuristic search
strategy in the CP-solver to quickly obtain good quality solutions, enabling us to handle
large test cases.

3.1.2 Outline of the Paper

The system model is presented in Sect. 3.2 where architecture, application and the
internals of a TSN switch are described. We formulate our problem in Sect. 3.3. An
introduction to control theory is presented in Sect. 3.4. In Sect. 3.5, the details of our
proposed method are given. We evaluate our proposed method in Sect. 3.6 on several
test cases. The related work in presented in Sect. 3.7 and Sect. 3.8 concludes the paper.

3.2 System Model

This section presents the architecture and application models. Table 3.1 summarizes
the notation used. The application model consists of a set of periodic messages that
are sent via flows over a distributed Fog-based architecture that consists of end systems
interconnected via links and switches that use TSN.

3.2.1 Architecture Model

The architecture is modeled as a directed graph G = {V,E}, where V = ES
⋃

SW is the
set of vertices and E ⊆ V ×V is the set of edges. A vertex νi ∈ V represents a node in
the architecture which is either an End-System (ES) or a network Switch (SW). An ES
is either the source (talker) or the destination (listener) of an application flow, whereas
an SW forwards the frames of flows. Nodes have input (ingress) and output (egress)

66
Paper B: Communication Scheduling for Control Performance in

TSN-based Fog Computing Platforms

ports. We denote the set of egress ports of a node with νi.P. A port p j ∈ νi.P is linked
to at most one other node. The set of edges E represents bi-directional full-duplex
physical links. Thus, a full-duplex link between the nodes νi and ν j is denoted with
both εi, j ∈ E and ε j,i ∈ E ; a link is attached to one port of the node νi and one port of
the node ν j.

Each link εi, j is characterized by the tuple 〈s,d,mt〉 denoting the speed of the link in
Mbit/s, the transmission delay function of the link and the macrotick, i.e., time granu-
larity of an event for the link, in µs. The transmission delay function of a frame on a
link εi, j.d(size) is calculated based the frame’s size, the physical medium, and the link
length. The function d is a notation used in the constraints in Sect. 3.5 and it is attached
to the link concept, i.e., ε.d(size) means d(ε,size).

Table 3.1: Summary of the notation

Notation Definition
G Network Graph
ES End-System
SW Network switch
νi ∈ V Network node
νi.d(c) Forwarding delay
p j ∈ νi.P Egress port
q j ∈ pi.Q Priority queue
εi, j ∈ E Link
εi, j.s Link speed
εi, j.d(c) Link propagation delay
εi, j.mt Link macrotick
ri ∈R Route
|ri| Number of links in a route
si ∈ S Flow
si.p Flow priority
si.c Flow size
si.t Flow period
si.d Flow deadline
|si| Number of flow instances
f k
i,m Frame

f k
i,m.φ Frame offset

f k
i,m.l Frame length

γi ∈ Γ Control application
γi.K Control function
γi.I Set of input flows
γi.O Set of output flows

3.2 System Model 67

Figure 3.2: Architecture model example: the blue boxes are end systems, the green
boxes are switches and the thick arrows are full-duplex physical links.

A route ri ∈ R, where R is a set of routes, is an ordered list of links, starting with a
link originating from a talker ES, and ending with a link to a listener ES. The number
of links in the route ri is denoted with |ri|, and it starts from 2 since we assume there is
at least one SW in the route. We define the function u :R×N0→E to capture the jth
link of the route ri.

An architecture model with three ESs two SWs is presented in Fig. 3.2, where the thick
lines are physical links. We also show in the figure examples on how the notation is
used, e.g., for a link tuple, ports, and routes.

3.2.2 TSN Switch Model

In the introduction we have motivated the use of TSN and the choice of traffic type for
application messages, i.e., Scheduled Traffic (ST) that is being sent based on schedule
tables in the switches using the IEEE 802.1Qbv “Enhancements for Scheduled Traffic”
amendment. Here we model the details of a TSN switch needed to formulate our
problem. For further details on how TSN works, the reader is directed to the respective
standards.

A TSN switch consists of ingress ports, a switching fabric, priority queues, gates, a
Gate Control List (GCL) and egress ports, see Fig. 3.3. The switching fabric receives
flows from the ingress ports and forwards each flow to the egress port pi, according
to the frame’s route. The egress port which has a set of eight priority queues pi.Q
(according to the IEEE 802.1Q standard [IEE14]), stores the flow in a relevant priority
queue q j ∈ pi.Q in First-In-First-Out (FIFO) order. A subset of the priority queues are
used for the ST traffic and the remaining queues are used for the less critical traffic,

68
Paper B: Communication Scheduling for Control Performance in

TSN-based Fog Computing Platforms

Figure 3.3: TSN switch internals.

similar to [COCS16]. Each frame has a Priority Code Point (PCP) field in the frame
header that specifies the priority.

According to the 802.1Qbv standard, transmission of traffic from each queue is regu-
lated by an associated gate which opens and closes based on a predefined GCL which
contains the opening and closing time of the switch gates. Queued flows in a queue
can be transmitted when a gate is open and cannot be transmitted when gate is closed.
In this paper we assume that the GCLs are deterministic, i.e., the flows are isolated
from each other: Only the frames of one of the flows are present in a queue at a time,
see [COCS16] for details.

Related work has ignored the forwarding delay that a frame experiences in a switch,
which is the time it takes a frame to get from the input (ingress) port to the queue of the
output (egress) port. This transmission delay is not related to the time the frame spends
in the queue.. However, since delays have an impact on QoC [Cer03], we have decided
to capture the forwarding delay in our model, and depends on the particular TSN switch
implementation. Hence, we denote the forwarding delay with νi.d(c) which takes c
(frame size in bytes) as the input and returns the time delay in µs. In the experiments
we measured this delay for the TSN implementation reported in [SGJM+20].

3.2.3 Application Model

An FCP hosts multiple applications of mixed-criticalities, e.g., critical control appli-
cations, real-time applications, and best effort applications. Applications are typically
modeled as interacting periodic real-time tasks that exchange messages, see [BCP20]
for how application tasks can be modeled. In this paper we address the configura-
tion of the TSN communication infrastructure, hence we focus on messages. Sect. 3.3

3.2 System Model 69

Figure 3.4: Example solution: ν1 is a fog node and runs the control function during
the execution slice denoted with E. The flow s1 is the input flow and the
flow s2 is the output flow. The control application’s period denoted with P,
is 10 ms (s1 and s2 have the same period).

discusses how tasks and messages can be put together in a system-level configuration.

Our model consists of a set of applications, which can either be control applications,
for which their QoC is important, or they can be real-time applications. Note that
control applications are also real-time, but not all real-time applications are control ap-
plications. The set of control applications is denoted with Γ. The tasks of both control
and real-time applications exchange messages, which, if they are on different ESs, are
transmitted using flows. The set of all flows (also called streams) in the system—both
control and real-time flows—are denoted with S.

Each flow si ∈S is responsible for sending the frames that encapsulate the data from an
application message and it is characterized by the tuple 〈p,c, t,d〉 denoting the priority,
the size in bytes, the period in milliseconds and the flow deadline, i.e., the maximum
allowed end-to-end delay in milliseconds. The priority of a flow is in the range from
0 to 7, where 0 is the highest priority concerning the eight priority queues of a switch

Table 3.2: Application example with six flows and two control applications

Flow Type & priority size period deadline routing
Details p c (bytes) t (ms) d (ms)

s1 γ1.I1 0 120 10 10 〈ε4,3,ε3,1〉
s2 γ1.O1 0 240 10 10 〈ε1,2,ε2,5〉
s3 γ2.I1 1 90 20 20 〈ε5,2,ε2,1〉
s4 γ2.O1 1 180 20 20 〈ε1,2,ε2,5〉
s5 RT 0 450 12 12 〈ε4,3.ε3,2,ε2,5〉
s6 RT 1 160 16 16 〈ε1,3,ε3,4〉
1 Application transfer functions are γ1.K = 100

s2+200 and γ2.K = 250
s2+s .

70
Paper B: Communication Scheduling for Control Performance in

TSN-based Fog Computing Platforms

egress port).

As mentioned, flows are periodic and may have different periods. We define the hy-
perperiod as the least common multiple of the periods of all flows. Depending on its
period, the frames of a flow will have to be transmitted multiple times within a hyper-
period, and we refer to each such transmission as an instance of a flow. The number
of instances for a flow si is denoted with |si|, and is derived from the period of the
flow t and the hyperperiod. For example, for three flows with the periods of 4, 5 and
3 ms, the hyperperiod would be 60 ms and the flows will have 15, 12 and 20 instances
respectively.

Each flow si is transmitted via a route r j which is captured by the function z : S →R
that maps the flows to the routes. We assume that each flow is associated to only one
route but several flows may share the same route. We also assume that the flows are
unicast, i.e., there is only one listener for a flow. Our model can be easily be extended to
handle multicast flows, i.e., that have multiple listeners, by adding each talker-listener
pair as a stand-alone flow with additional constraints. We assume that the routes are
fixed and given. Determining routing in TSN is an orthogonal problem with scheduling.
Researchers have shown how to integrate routing with scheduling [GZRP18] and have
concluded that most shortest-path routing is appropriate in most network topologies,
with the exception of mesh networks that have a lot of redundant links. Our system
model, including the Constraint Programming model from Sect. 3.5.2 can be extended
to include routing optimization, if needed.

We define a frame for each instance 1 ≤ m ≤ |si| of the flow si and on each link 1 ≤
k≤ |r j| of the route r j, and denote it with f k

i,m. A frame f k
i,m is associated with the tuple

〈φ , l〉 denoting the start time of the frame (offset φ) and its duration (length l).

A control application γi ∈ Γ is characterized by the tuple 〈K,I,O〉 denoting the control
transfer function, the set of input flows, and the set of output flows. The control transfer
function γi.K captures the control law of the application, see Sect. 3.4 for more details.
The set of input flows γi.I is a subset of S which represents the control I/O flows
that are generated by sensors (i.e, ESs in the network) and deliver data to the control
application running on an ES. The set of output flows γi.O is a subset of S which
represents the control I/O flows that are generated by control function running on an
ES and deliver data to actuators (i.e, ES on the network).

3.3 Problem Formulation

We formulate the problem as follows: Given (1) the set of all flows S in the system,
for both the control and the real-time applications, (2) the details of the control ap-

3.4 Control Theory 71

plications Γ, (3) the network graph G, and (4) a set of routes R, we are interested
in synthesizing the GCLs in the network such that (a) all the flows in the system are
schedulable (their deadlines are satisfied) and (b) the QoC of control applications, as
defined in Sect. 3.4.3, is maximized. Synthesizing the GCLs is equivalent to deter-
mining (i) the frames’ offsets f k

i,m.φ , and (ii) the frames’ length f k
i,m.l. An example

solution, considering the network from Fig. 3.2 and the flows from Table 3.2 is pre-
sented in Fig. 3.4. The solution is depicted as a Gantt chart where the rows are the
resources (links) and the rectangles labeled with the flow names si depict the frames’
offsets and lengths.

As discussed, the network configuration problem we address in this paper is orthogonal
to the problem of configuring the tasks, e.g., deciding their mapping to the cores of an
ES and their scheduling. Researchers have proposed several ways of putting together
the schedules for tasks and messages in a global system configuration, e.g., by combin-
ing the formulation of their scheduling problems [CO16] or by iteratively integrating
the task and message scheduling. The solution presented in this paper for flows can
be combined with the formulation for tasks from [BCP20]. In addition, to support the
integration of the GCLs that we determine with tasks schedules derived separately, we
maximize the time duration where tasks have to execute, denoted with E in Fig. 3.4,
see see Sect. 3.5.3 for its definition.

3.4 Control Theory

This section gives the essentials of the theory needed for the calculation of the QoC.
We start with the definition of an Feedback Control System (FCS) in Sect. 3.4.1 where
the mathematical representation of a plant and the associated controller, and also the
control design principle are described. Afterwards, we continue with the model we
used for implementing a control application and a brief definition of the control perfor-
mance and the effect of timing on it, in Sect. 3.4.2. Finally, we define in Sect. 3.4.3 the
QoC and present the approach we use in this work for calculating it.

3.4.1 Feedback Control Systems and Control Design

A dynamical system around an equilibrium point is modeled as a mathematical relation
between its inputs and outputs, and described with a transfer function [OY02]. The
transfer function, commonly called Plant, is defined in the form of

Y (s) = G(s)×X(s), (3.1)

72
Paper B: Communication Scheduling for Control Performance in

TSN-based Fog Computing Platforms

Figure 3.5: A simple FCS.

where Y (s) is the outputs, X(s) is the inputs, and G(s) is the transfer function, all de-
fined in the frequency domain. An FCS, or alternatively a control application, uses
sensors to sample the plant’s outputs Y (s), calculates the deviation E(s) from the de-
sired output R(s) and uses the control function K(s) to generate the control signal U(s)
which is applied by actuators. In this paper, we assume that the desired output R(s) is
zero which results in E(s) = Y (s).

The control function K(s) defines the mathematical relation between the deviation E(s)
of the plant feedback from desired output, and the control signal U(s). A simple FCS
is depicted in Fig. 3.5, where W (s) are the disturbances applied to plant inputs.

An FCS is implemented as a periodic real-time application running on a FCP whose pe-
riod depends on the system plant G(s). The shorter the period, the faster the controller
is able to respond to the disturbances and the more computational power is required
(which is a bottleneck on real-times systems where the resources are constrained). To
this end, while designing an FCS choosing the right application period is an optimiza-
tion problem. It is common to choose the period based on a rule of thumb which
determines the period based on the bandwidth of the closed-loop system [AW97]. On
the other hand, choosing an appropriate control law to be implemented in the control
function K(s) has an impact on the resources needed for the calculation and the its
response to the disturbances. Several control laws are proposed in the literature for
control functions [OY02].

3.4.2 Modeling and Timing of Feedback Control Systems

The implementation of an FCS consists of three periodic events: (i) receiving the inputs
data from sensors, (ii) calculating the control signal with control function K(s), and (iii)

3.4 Control Theory 73

sending the control signal data to actuators that apply the signal to the plant. Without
the loss of generality, we assume that each FCS receives the input from exactly one
sensor and sends signal data to exactly one actuator. We also assume that the three
periodic events have the same period.

We map our FCS model to the control application model described in Sect. 3.2.3 as
follows: A control application γi is an FCS that has the control function γi.K, equivalent
to K(s), running on the node ν j (which is an ES) in the network G. The associated
sensor is also an ES node that transmit a period network flow sm ∈ γi.I to the node ν j
as the destination via TSN. The generated control signal U(s) is also a period network
flow sn ∈ γi.O transmitted from the the node ν j to the associated actuator which is also
an ES. To this end, the set of input flows γi.I and the set of output flows γi.O both have
only one unique member which are sm and sn respectively.

Concerning our FCS model, the control function γi.K is ready for execution when its
input is arrived, i.e. the node ν j receives the input flow sm; and produces the control
signal sn when it terminates. Thus the control signal sn needs to be transmitted after
the reception of the input signal sm and execution of the control function γi.K. We
formulate this constraint in Sect. 3.5.2.

While designing an FCS, for finding the suitable control law and tuning it, several pa-
rameters such as the damping ratio, the phase margin and the gain margin (see [OY02]
for more details) have to be determined. These parameters affect the accuracy and
rapidity of the FCS which is called control performance, in opposite directions. The
performance of an FCS is associated with its rise-time Trise, peak-time Tpeak, settling-
time Tsettling and steady state error.

The rise-time Trise is defined as the time takes for the output response to reach 90%
of the input value. The rise-time shows how fast the controller can react to the distur-
bances exerted to the dynamical system. The peak response is defined as highest output
response the controller reached before the desired value. The peak plays an important
role in the robustness of the controller against disturbances. The settling-time Tsettling
is defined as the time takes for the output response to reach 98% of the input value. The
settling-time shows how fast the controller can reach to the desired state. The steady-
state error shows the minimum deviation of the controller output response from the
desired state. It shows the accuracy of the controller. Fig. 3.6 shows the step-response
of a sample control loop where these associated parameters are depicted.

Furthermore, for a given FCS whose design parameters are determined, the control per-
formance changes in runtime due to the discrete time nature of the real-time systems.
Ideally, all three events of an FCS should execute with the shortest delay between the
events and without timing variations (jitter) as well. A time delay decreases the phase
margin of the FCS leading to worse control performance. Jitter, i.e. the deviation from
the periodic timing of an event, also negatively impacts the control performance.

74
Paper B: Communication Scheduling for Control Performance in

TSN-based Fog Computing Platforms

Figure 3.6: Step response of a sample control loop [BCP20].

We assume that the time delay and jitter apply only to the event of network message
transmission, while the execution of the control application is ignored in this paper, and
only addressed as the required time interval needed between the reception and trans-
mission of the input and output flows. We also consider the input-output jitter of the
control application which is the maximum deviation of the worst-case delay between
the sensors’ sampling and the actuators actuation covering the timing of communica-
tion links from and to sensors and actuators.

3.4.3 Quality of Control

In real-time systems where control applications are running, preserving QoC (which is
used interchangeably to mean “control performance”) is a necessity. The QoC can be
captured in a cost function which can also be used to evaluate the performance of the
controller. A common choice is to use a quadratic cost function of the form

J =
∫

∞

0

(
xT (t)Q1x(t)+uT (t)Q2u(t)

)
dt, (3.2)

where the weighting matrices Q1 and Q2 tell how much deviations in the different
states and the control input should be penalized. A larger value of such as control
performance cost function means worse QoC and typically increasing the settling time,
the steady state error and closer peak time to rise time of the system.

The value of cost J depends on several criteria such as Input-Output jitter of a con-
trol application as well as the end-to-end response of the control application (the de-
lay between sampling and actuation). Generally, the control performance is degraded
when the end-to-end response is more than what the control application is designed
for or when the control application experiences Input-Output jitter in each iteration,

3.5 Constraint Programming 75

see [CPBM19] for more details. The amount of each criterion’s impact depends on the
control function. To this end, the calculation of the QoC is possible via a simulation of
the control function behavior. Tools such as Jitterbug [LC02], JitterTime [CPBM19]
and TrueTime [HCÅ02] are proposed to simulate the control function behavior. Jit-
terbug can calculate the QoC based on the fixed or random jitter applied to inputs and
outputs of a control function. It can also be used to design controllers concerning the
stability margin of the control function. JitterTime can calculate the QoC based on
the inputs and outputs schedules as well as the control task schedules. Also, it can be
employed to analyze the sensitivity of a control function to delays and jitter. TrueTime
can simulate the execution of a control application based on a given schedule tables
making the analysis of the control output possible. Thus, we employed JitterTime to
calculate the QoC with the same cost function as Eq. (3.2) in this paper.

JitterTime takes the sending and receiving time of sensor and actuator flows which can
be captured from GCLs, and simulates the behaviour of a control application with the
given timing of control application’s inputs and outputs. More information about the
inner workings of JitterTime and its use cases can be found in [CPBM19].

3.5 Constraint Programming

The communication scheduling problem as a decision problem has been proved to be
NP-complete in the strong sense [Sin07]. To this end, we propose an optimization
strategy called Control-Aware Communication Scheduling Strategy (CACSS), based
on a CP formulation that uses search heuristics inside the CP solver.

As shown in Fig. 3.7, CACSS takes as the inputs the architecture and application mod-
els and outputs a set of the best solutions found during search. As mentioned, CACSS
is based on a CP formulation (the “CP Solver” box) in the figure. CP is a declarative
programming paradigm that has been widely used to solve a variety of optimization
problems such as scheduling, routing, and resource allocations. With CP, a problem is
modeled through a set of variables and a set of constraints, see the the “CP model” box.
Each variable has a finite set of values, called domain, that can be assigned to it (see
Sect. 3.5.1). Constraints restrict the variables’ domains by bounding them to a range of
values and defining relations between the domains of different variables.

CACSS visits solutions that satisfy the constraints defined in Sect. 3.5.2 and evaluates
them using the objective function defined in Sect. 3.5.3 to check if the solution is an
improving solution, i.e., better than the best solutions found so far. Ideally, for the
QoC calculation, the objective function should use JitterTime. However, tools such
as JitterTime and Jitterbug use time consuming simulations of the control application
behavior, and hence they cannot be integrated into a CP solver since the search will not

76
Paper B: Communication Scheduling for Control Performance in

TSN-based Fog Computing Platforms

Figure 3.7: Overview of CACSS.

scale. Thus, we propose a novel analytical model for the QoC evaluation within the
CP formulation, see Sect. 3.5.3. Every time the CP solver finds an improving visited
solution (the “New Solution” box), we call JitterTime (the “Jitter Time” box) calculat-
ing the simulation-based accurate QoC value. By default, the CP solver systematically
performs an exhaustive search by exploring all the possibilities of assigning different
values to the variables. However, such a search is intractable for NP-complete prob-
lems, therefore we instead employ a metaheuristic search, see Sect. 3.5.4.

3.5.1 CP model

We define two sets of decision variables for the CP model, which are associated with the
frame offsets and the frame lengths respectively. Each decision variable is associated
with a domain from which the CP solver decides the variable’s value. The decision
variables and their domain are defined by

∀si ∈ S,∀m ∈ [1, .., |si|],∀k ∈ [1, .., |r j|],
r j = z(si),εv,w = u(r j,k) :

f k
i,m.l =

si.c
εv,w.s× εv,w.mt

0≤ f k
i,m.φ ≤ (

si.t
εv,w.mt

− f k
i,m.l)

(3.3)

where the domain of the frame lengths contains exactly one element, i.e. the CP solver
initially decides the values of frame length variables.

3.5 Constraint Programming 77

3.5.2 Constraints

We define five constraints that regulate the network traffic and relates the domain of the
CP variables. CP only finds the feasible solutions, i.e. all the constraints are met.

The Link Overlap constraint imposes the restriction on the solution to not allow a phys-
ical link to transmit more than one frame at a time, which is equivalent to avoid sharing
a physical link with two frames at any time. The constraint is defined in Eq. (3.4).

∀si,s j ∈ S, i 6= j,∀m ∈ [1, .., |si|],∀n ∈ [1, .., |s j|],
ro = z(si),∀k ∈ [1, .., |ro|], rp = z(s j),∀l ∈ [1, .., |rp|],
εv,w = u(ro,k) = u(rp, l) :

(f k
i,m.φ +m× si.t

εv,w.mt
≥ f l

j,n.φ +n×
s j.t

εv,w.mt
+ f l

j,n.l)∨

(f l
j,n.φ +n×

s j.t
εv,w.mt

≥ f k
i,m.φ +m× si.t

εv,w.mt
+ f k

i,m.l).

(3.4)

The Route constraint enforces the ordered propagation of a frame concerning its associ-
ated route from its talker all the way to its listener. The constraint also enforces that for-
warding a frame from a node starts after it has completely arrived at the reception of the
node concerning the propagation delay. We define the constraint in Eq. (3.5) where δ

is the network precision that is the worst-case difference between the nodes clock in
the network according to the 802.1AS clock synchronization mechanism [IEE17].

∀si ∈ S,∀m ∈ [1, .., |si|],∀k ∈ [1, .., |r j|),
r j = z(si),εv,w = u(r j,k),εw,x = u(r j,(k+1)),
∆ = εv,w.d(si.c)+νw.d(si.c)+δ :

f k+1
i,m .φ × εw,x.mt ≥ (f k

i,m.φ + f k
i,m.l)× εv,w.mt +∆.

(3.5)

We define the Isolation constraint in Eq. (3.6) to avoid displacement of frames in dif-
ferent switch queues. The constraint imposes the restriction on any two same-priority
frames on the same link not to arrive at the ingress port of a switch simultaneously.
In another word, either a frame is received after or before any other frame on the
same link, or the different priority frames on the same link are received at the same
time. This constraint enforces the order of frame transmission in the switch schedules,

78
Paper B: Communication Scheduling for Control Performance in

TSN-based Fog Computing Platforms

see [COCS16] for more details. In Eq. (3.6), δ represents the network precision.

∀si,s j ∈ S, i 6= j,∀m ∈ [1, .., |si|],∀n ∈ [1, .., |s j|],
ro = z(si),∀k ∈ (1, .., |ro|], rp = z(s j),∀l ∈ (1, .., |rp|],
εv,w = u(ro,k) = u(rp, l),

εa,v = u(ro,k−1),εb,v = u(rp, l−1) :

((f k
i,m.φ × εv,w.mt +m× si.t +δ ≤

f l−1
j,n .φ × εb,v.mt +n× s j.t + εb,v.d(s j.c))∨

(f l
j,n.φ × εv,w.mt +n× s j.t +δ ≤

f k−1
i,m .φ × εa,v.mt +m× si.t + εa,v.d(si.c)))∨
(si.p 6= s j.p).

(3.6)

The Deadline constraint defined in Eq. (3.7) imposes the restriction that a flow is re-
ceived by its listener within its deadline. This constraint is equivalent to that the time
interval between the scheduled transmission of a stream from its talker and the recep-
tion of it by the listener is smaller than its deadline.

∀si ∈ S,∀m ∈ [1, .., |si|],r j = z(si),

εa,b = u(r j,1),εy,z = u(r j, |r j|) :

f 1
i,m.φ × εa,b.mt + si.d ≥ εy,z.mt× (f

|r j |
i,m .φ + f

|r j |
i,m .l).

(3.7)

The Control Precedence constraint enforces every instance of a control application’s
output flows to be scheduled for transmission after the complete reception of the same-
instance input flows at the listener. Thus, the control application’s output flows are
transmitted from the talker node after the execution of the control function is terminated
which needs the complete reception of the input flows. The constraint is defined in
Eq. (3.8).

∀γi ∈ Γ,∀s j ∈ γi.I,∀sk ∈ γi.O,
∀m ∈ [1, .., |s j|],∀n ∈ [1, .., |sk|],
ro = z(s j),rp = z(sk),

εa,b = u(ro, |ro|),εb,z = u(rp,1),
∆ = εa,b.d(s j.c)+νb.d(s j.c)+δ :

(f |ro|
j,m .φ + f |ro|

j,m .l)× εa,b.mt +∆≥ εb,z.mt× f 1
k,m.φ

(3.8)

3.5 Constraint Programming 79

3.5.3 Analytical QoC CP model and Objective Function

The CP solver propagates the constraints all over the search spaces and removes the
unfeasible solutions (which do not satisfy the constraints) from the search space that
results in the creation of the solution space. Afterwards, the CP solver picks the first
solution from the solution space and determines the value of the objective function
for the solution. The CP solver searches for better solutions in terms of the objective
function until no such solutions can be been found.

In this work, we are interested in finding the solutions which have better QoC. Since
calculating the QoC needs a simulation of the control application’s behavior, the inte-
gration of QoC calculation tools such as JitterTime in the CP model is impossible due
to their runtime. Thus, we propose using a analytical model for QoC as the objective
function in the CP model, which aims to drive the search to solutions that are as close as
possible (in terms of the QoC value obtained with JitterTime simulations) to solutions
obtained if JitterTime would be used as an objective function for the search.

Our proposed analytical model captures within the CP formulation: (i) minimum jitter
for end-to-end input-output flows, (ii) maximum delay between reception of the in-
put flow and transmission of the output flow (which is equivalent to minimum input
flow delay and minimum output flow delay), denoted with E and called task execution
interval, and (iii) minimum jitter for the task execution interval.

Let us illustrate these aspects using the example in Fig. 3.4 where we have a Gantt chart
for the execution of an example control loop depicting components of our analytical
model. In this toy example, we have a control application γ1 which has s1 as the input
flow and s2 as the output flow. The application’s control function γ1.K is running on the
node ν1. The flow s1 is transmitted from the sensor node ν4 and routed via the switch ν3
to the node ν1 and has the same period as the control application, denoted with P in the
figure. The flow s2 is transmitted from the node ν1 and routed via the switch ν2 to the
actuator node ν5 and also has the same period as the control application.

The node ν1 runs the control function once its input flow s1 arrives and transmits the
flow s2 on the terminal of the control function. Thus, the larger the task execution
intervalE, the more probable that the control function implemented as tasks are sched-
uled for execution on the node ν1. Since we need to define the CP objective function to
be minimized, and the control application has the known period P, the objective would
be to minimize the ω1 and ω2 which are, respectively, the input flow and the output
flow end-to-end delay. Furthermore, we are interested in minimizing the variation of
the task execution interval E which results in more possibility of the control function’s
schedulability. This is also formulated as minimizing the input and output flows jitter.

Additionally, minimizing ω1 and ω2 and their variation positively impacts on the QoC,

80
Paper B: Communication Scheduling for Control Performance in

TSN-based Fog Computing Platforms

since the control function receives the plant’s sampling faster and without variation and
the control signal is applied to the plant faster and without variation as well. However,
the control function implemented as tasks could be scheduled for execution anywhere
in the execution slice, but because of the jitter-free and short-delay input output the
negative side of the task scheduling is compensable.

We define the QoC analytical function Ω in Eq. (3.9), where the terms ω1 captures input
flow delay, ω2 captures output flow delay, ω3 captures input flow jitter, ω4 captures
output flow jitter and ω5 captures E jitter. The range of all the ω terms is from 0 for no
delay/jitter to 1 for a delay/jitter equal to the control application’s period. The delay and
jitter trade-off is controlled by the weight β which can direct the search towards either
optimized delay or optimized jitter, concerning the type of the control applications.
A larger β value drives the search towards towards smaller jitter. The β value can be
determined by analyzing using JitterTime the behavior of the control function regarding
the sensitivity to jitter and delay. JitterTime simulates the behavior of a control function
with a given delay and jitter values. Hence, given different delay and jitter, JitterTime
is capable of determine the sensitivity ratio. Thus, we use JitterTime for analyzing the
sensitivity and determining the β value for a control function.

∀γi ∈ Γ,∀s j ∈ γi.I,∀sk ∈ γi.O,
∀m,q ∈ [1, .., |s j|],∀n,u ∈ [1, .., |sk|],
ro = z(s j),rp = z(sk),

εa,b = u(ro, |ro|),εe, f = u(ro,1),
εc,g = u(rp, |rp|),εb,z = u(rp,1) :

ω1 = ∑
f |ro|

j,m .φ × εa,b.mt

s j.t

ω2 = ∑
sk.t− f 1

k,n.φ × εb,z.mt

sk.t

ω3 = ∑
|(f |ro|

j,m .φ − f |ro|
j,q .φ)× εa,b.mt +(m−q)× s j.t|

s j.t

ω4 = ∑
|(f 1

k,n.φ − f 1
k,u.φ)× εb,z.mt +(n−u)× sk.t|

sk.t

ω5 = ∑
|(f |rp|

k,m .φ − f |rp|
k,q .φ)× εc,g.mt+

(f 1
j,q.φ − f 1

j,m.φ)× εe, f .mt +(m−q)× s j.t|
s j.t

Ω = ω1 +ω2 +β × (ω3 +ω4 +ω5)

(3.9)

3.6 Evaluation 81

3.5.4 Search Strategy

In this work we used the Google OR-Tools [Goo21] CP solver. We configured this
solver to use a metaheuristic as the search strategy. A search strategy specifies the
order of selecting the CP model variables for assignment and the order of selecting the
values from the domain of a variable. The metaheuristic strategy does not guarantee
optimality but it is effective in finding a good quality solutions in a reasonable time.

We used the same metaheuristic strategy as [BZP20] based on a Tabu Search meta-
heuristic algorithm [BK05], which aims to avoid the search process being trapped in a
local optimum by increasing diversification and intensification of the search. We apply
the metaheuristic strategy to the set of offset variables f k

i,m.φ that represents control-
I/O flows. In this strategy, once a control application is scheduled with the respective
minimum objective value, it is treated as keep variables whose values should not be
changed. We also used SolveOnce strategy for the set of length variables f k

i,m.l.

3.6 Evaluation

The structure of this section is as follows: we first describe our test setup and the
test cases we used for evaluation in Sect. 3.6.1 followed by comparing our proposed
Control-Aware Communication Scheduling Strategy (CACSS) with the related work in
Sect. 3.6.2. Afterwards, we evaluate our proposed method on the synthetic test cases in
Sect. 3.6.3. In Sect. 3.6.4 we evaluate CACSS on a realistic test case. We also validate
the generated GCLs using the OMNET++ simulator in Sect. 3.6.5. Finally, we used
the generated GCLs and validated them on a TSN hardware platform in Sect. 3.6.6.

3.6.1 Test Cases and Setup

We implemented CACSS in Java using Google OR-Tools [Goo21] as the CP solver
and run it on a computer with an i9 CPU at 3.6 Ghz and 32 GB of RAM. We have
considered a time limit for the CP solver of 10 to 100 minutes depending on the test
case size. For the evaluation we set the macrotick, the network precision and the link
speed to 1 µs, 0 µs and 100 Mbit/s, respectively.

We have generated thirteen synthesis test cases which all include control applications
inspired from the industrial domain. The control applications have different control
functions for controlling plants in the form of Eq. (3.10) where a and b are randomly
chosen respectively from [50,100,150] and [100,200,300,400]. We have used Jitter-

82
Paper B: Communication Scheduling for Control Performance in

TSN-based Fog Computing Platforms

Table 3.3: Evaluation on the synthetic test cases

Total no. Total no. of Total no. Total no. Total no. Ω QoC for QoC for Runtime
of flows control apps of SWs of ESes of frames CACSS ZJGCL (ms)

1 8 1 2 6 53 66.1 0.862 1.335 132
2 12 1 2 6 68 66.0 0.860 1.415 138
3 14 2 2 6 60 77.4 0.959 1.409 147
4 8 1 3 6 77 110.2 1.367 1.985 170
5 16 3 4 8 89 67.1 0.872 1.605 621
6 24 3 5 10 171 67.3 0.881 1.821 1351
7 16 2 5 8 100 58.0 0.771 1.177 743
8 20 3 6 10 149 66.5 0.867 1.187 943
9 24 4 7 10 198 90.0 1.152 1.555 1465
10 30 4 7 10 244 90.0 1.153 1.661 1793
11 27 5 20 20 1770 151.0 1.889 2.957 6225
12 27 5 20 20 1834 151.0 1.897 3.805 9153
13 27 7 20 20 1770 149.6 1.865 3.411 3553

bug for designing the control function K with the LQG control law [LC02] as discussed
in Sect. 3.4.3. The test case sizes are progressively increasing in number of ESs, SWs,
and flows (and respectively control applications). The flows are generated randomly
with various sizes to fit in single MTU-sized frames, various periods all in the form
of 2n ms, n = {0,1,2,3,4}, and various priorities. The details of the synthetic test
cases are depicted in Table 3.3 where the sixth column shows the total number of flow
frames.

G =
a

s2 +b
(3.10)

We have also considered a realistic test case, an autonomous mobile robot, called AMR.
The AMR case consists of 27 flows varying in size between 100 and 1,500 bytes, with
periods between 1 ms and 40 ms and deadlines smaller or equal to the respective peri-
ods. We used Jitterbug for designing the control functions from the plant in Eq. (3.10).
The details of the realistic test case are shown in Table 3.6.

Additionally, we generated three test cases for evaluating on a hardware platform. The
generated GCLs are implemented on the platform and the end-to-end (E2E) delay—the
time between sending a frame from it source to the time it arrives at its destination—and
jitter of flows are measured. The details of the test cases are shown in Table 3.5. The
hardware platform is presented in [SGJM+20] and consists of three TSN switches that
are connected in a daisy chain manner. The first and the last switches consist internal
ESs. The links are full duplex with the speed of 1 Gbps and flows can be sent from
both ESs. A schematic of the hardware platform is shown in Fig. 3.8 where the points
for the measurement are marked.

3.6 Evaluation 83

Figure 3.8: Schematics of the hardware platform.

3.6.2 Comparison with the related work

Let us first compare qualitatively the features of our CACSS with the approaches of the
related work, i.e., (i) Zero-Jitter GCL (ZJGCL) proposed in [COCS16] and (ii) Frame-
to-Window GCL (FWGCL) proposed in [SCS18a]. Table 3.4 summarizes the model
features, where the first column lists the feature compared. CACSS and ZJGCL con-
sider scheduling of each individual flow frame and leads to zero jitter solutions under
the jitter-optimized condition, whereas FWGCL schedules “windows” which may con-
tain several frames, reducing thus the size of GCLs at the expense of introducing jitter.
Considering flow frames for scheduling, CACSS and ZJGCL both enforce “frame iso-
lation” that results in frames with zero jitter, see [COCS16] for a discussion of the need
for frame isolation to create deterministic GCLs. All the three approaches consider
network precision.

The main advantage of CACSS over the related work is the modeling of control appli-
cations, i.e., the precedence constraints of input and output flows and the task execution
interval. None of the related work considers the control application modeling, which
makes the assessment of QoC impossible. To integrate the evaluation of control per-
formance into the optimization, we have formulated the QoC analytically capturing the
minimization of the input-output and execution jitter of control applications and also
leaving enough time space for the control functions to be executed. In addition, the
CACSS also considers a model for forwarding delay of SWs, which makes the sched-

Table 3.4: Comparison of different communication scheduling mechanisms

Item ZJGCL FWGCL CACSS
Scheduling object frame window frame
Frame isolation Yes No Yes
Network precision Yes Yes Yes
Control app. model No No Yes
Forwarding delay No No Yes
Point-to-Point Tunneling Protocol (PPTP) flows scheduling No No Yes

84
Paper B: Communication Scheduling for Control Performance in

TSN-based Fog Computing Platforms

Table 3.5: Details of the implemented-on-hardware test cases: Sizes are in bytes, Pe-
riods and deadlines are in µs.

Flow Size Period Deadline Talker Listener Reported max. Measured max. Reported max. Measured max.
(bytes) (µs) (µs) E2E delay (µs) E2E delay (µs) E2E jitter (µs) E2E jitter (µs)

Hardware Test Case 1
1 400 600 2400 ES1 ES2 58 58.32 0 0.46
2 100 1200 2400 ES1 ES2 20 19.93 0 0.20
3 300 800 2400 ES2 ES1 46 46.23 0 1.87
4 60 2400 2400 ES2 ES1 16 15.82 0 0.06

Hardware Test Case 2
1 400 1200 4800 ES1 ES2 58 58.34 0 0.49
2 100 2400 4800 ES1 ES2 20 19.89 0 0.14
3 300 1600 4800 ES2 ES1 46 46.27 0 1.82
4 60 4800 4800 ES2 ES1 16 15.82 0 0.06

Hardware Test Case 3
1 400 2400 9600 ES1 ES2 58 58.33 0 0.49
2 100 4800 9600 ES1 ES2 20 19.88 0 0.12
3 300 3200 9600 ES2 ES1 46 46.26 0 1.80
4 60 9600 9600 ES2 ES1 16 15.82 0 0.05

ules more accurate considering a TSN hardware implementation.

We have also performed a quantitative comparison our proposed method CACSS with
the ZJGCL approach from the related work. Note that a comparison between ZJGCL
and FWGCL is provided in [SCS18a], and since FWGCL introduces scheduling flexi-
bility at the expense of jitter, it will lead to worse control performance. Hence, due to
this, and for space reasons, we have not compared against FWGCL. ZJGCL does not
consider control performance, hence, in order to facilitate a comparison, we have reim-
plemented ZJGCL using a CP formulation and added constraints that enforce the con-
struction of valid solutions, i.e., to schedule the output flows to be transmitted after the
reception of the input flows and to be received close to their deadline (leaving enough
space for execution of the control functions). The GCLs obtained with both CACSS
and ZJGCL were then evaluated using JitterTime, which accurately measures the con-
trol performance of each solution. The evaluation results are depicted in columns 8 and
9 in Table 3.3. The results show that CACSS has generated schedules with significantly
better QoC than ZJGCL. The average QoC for ZJGCL is 64% larger. ZJGCL schedules
flows such that jitter becomes zero; this is useful but not sufficient for a good QoC
value, which also depends on input-output jitter and input/output delay. In addition,
our method also maximizes the task execution intervals, which support the integration
of the resulted schedules with the schedules for tasks. In contrast, the ZJGCL GCLs
will have to be drastically modified before they can be integrated with task schedules.

3.6.3 Evaluation on Synthetic Test Cases

We evaluated the performance of CACSS on the synthetic test cases from Table 3.3.
Our solution has successfully scheduled all the test cases and the schedules have zero

3.6 Evaluation 85

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Iteration

0

5

10

15

20

25

30

35

V
a

ri
a

ti
o

n
 o

f
th

e
 v

a
lu

e
s

 (
%

)

QoC

Figure 3.9: Comparison of analytical function Ω with QoC obtained by JitterTime for
test case 5 from Table 3.3.

jitter. We first evaluate the runtime of our proposed solution. The solution runtime in
milliseconds for each test case is given in column 10 in Table 3.3. As depicted in the
table, the runtime increases with the increase of the total number of frames, i.e., larger
test cases. As mentioned, we have given a time limit to the solver, between 10 and 100
min., depending on the test case size. All runs have finished well before the time limits,
which means that the CACSS was able to determine the optimal results in terms of the
objective function value from Eq. (3.9). This shows that, using our analytical QoC
model inside the CP formulation, we are able to solve large test cases in a reasonable
time.

The columns 7 and 8 in Table 3.3 show the objective function value Ω Eq. (3.9)
and QoC measured with JitterTime (which corresponds to the J value captured by
Eq. (3.2)). The question is if driving the search with Ω, which is a “proxy” for QoC, as
we do in CACSS is as good as driving the search with J, which is the actual QoC value.
Hence, we were interested to determine if our analytical QoC model Ω is able to drive
the search to solutions with good QoC. Thus, for a test case 5 from Table 3.3, we have
replaced the fast analytical QoC model in the CP formulation with the simulation-based
slow-but-accurate JitterTime QoC value. We have run CACSS for test case 5 with both
setups, using Ω from Eq. (3.9) vs. the QoC value J obtained with a call to JitterTime.
The results are shown in Fig. 3.9, where we compare the two values (y-axis) during
the search, i.e., during the iterations listed on the x-axis. On the y-axis we have the
percentage deviation of Ω and J for their best respective values obtained at the end of
the search; in the last iteration, the deviation is zero, because we have the best value
for both of them. As we can see in the figure, our analytic model of QoC closely tracks
the simulation-based model of QoC, which supports our hypothesis that the analytical
QoC model Ω is a good proxy objective function for guiding the search.

86
Paper B: Communication Scheduling for Control Performance in

TSN-based Fog Computing Platforms

Figure 3.10: Implementation of TC1 in OMNET++.

3.6.4 Evaluation on a Realistic Test Case

We also evaluated CACSS on the autonomous mobile robot (AMR) realistic test case.
The results of the evaluation are presented in Table 3.6, where column 2 shows the
number of control applications. In the realistic test case, we assumed that the link
speed is 1 Gbps. The CACSS has successfully scheduled all the flows in the test case
and achieved a good QoC, which is captured by the objective function Ω (column 4 of
the table).

3.6.5 OMNET++ validation

We have used the OMNET++ simulator with the TSN NeSTiNg extension [FHC+19]
to validate the generated GCLs, and also measured the average delay and jitter of the
solutions. Our goal was to evaluate the correctness and the accuracy of our proposed
solution within a realistic simulation environment.

The NeSTiNg extension of OMNET++ ignores the forwarding delay, so to facilitate a
fair comparison we updated our CACSS approach creating a variant that considers a
zero forwarding delay (ZFD), and named it CACSS-ZFD. We took the synthetic test
case 1 from Table 3.3, synthesized the GCLs with both CACSS and CACSS-ZFD. We
simulated the schedules of all the synthetic and realistic test cases from Tables 3.3

Table 3.6: Evaluation on realistic test case: AMR consists 27 flows, 20 ESes, 20 SWs.

Test case No. of Average Ω Runtime No. of
control apps E2E delay frames

AMR 9 52 134 2348 ms 1452

3.6 Evaluation 87

and 3.6 using OMNET++. The schedules behave as expected and the delays we extract
from the OMNET++ simulations are identical with the values obtained by our CACSS.
Let us provide more details for one of the test cases. Fig. 3.10 shows the architecture
of the synthetic test case 1 implemented in OMNET++. The simulation is run for
a hyperperiod which is 16 ms and the results are depicted in Table 3.7, where the
observed and reported end-to-end (E2E) delays are shown in µs for OMNET++ and
CACSS, respectively.

Our validation experiment shows that the generated GCLs are correct and all the flows
meet their requirements. The values of the observed E2E delay from OMNET++ (col-
umn 2) are equal to the values reported by CACSS-ZFD (column 3), which is expected,
since they both use the same assumptions, e.g., ignoring the forwarding delay. More-
over, the maximum jitter is the same for all the solutions and equals to zero.

3.6.6 Evaluation on a Hardware Platform

We have also evaluated the performance of CACSS on the hardware platform from [SGJM+20]
and in this context we removed the assumption that the forwarding delay is ignored. For
this evaluation, we assumed that all the SWs are the same type as presented in [SGJM+20].
The authors proposed the following equation for capturing the forwarding delay d
in µs:

d = d4+ 21× c
400

e, (3.11)

where c is the size of the flows in bytes. Although we are using this TSN switch

Table 3.7: Simulation results of the synthetic test case 1 from Table 3.3

Flow Observed E2E delay Reported E2E delay
ID in OMNET++ (µs) in CACSS-ZFD(µs)
1 245 245
2 318 318
3 332 332
4 274 274
5 210 210
6 142 142
7 178 178
8 387 387

88
Paper B: Communication Scheduling for Control Performance in

TSN-based Fog Computing Platforms

(a) E2E delay of s1 (b) E2E delay of s2

(c) E2E delay of s3 (d) E2E delay of s4

Figure 3.11: The details of the measured E2E delay of flows in the test case 2 form the
Table 3.5 implemented on the hardware platform. Thick lines are kernel
density estimates.

hardware implementation in a different application scenario compared to [SGJM+20],
since the forwarding delay model depends on the hardware implementation and not the
application scenario, their delay model is also applicable to our case.

To be closer to implementation, CACSS can also consider the scheduling of PPTP
flows for time synchronization. These PPTP flows have precedence constraint which
has been already addressed in CACSS. We have considered that PPTP flows are imple-
mented as high priority time sensitive traffic that are also scheduled along with network
flows.

The generated GCLs are implemented on the SWs and the maximum delay and jitter
of flows are measured from the measurements points shown in Fig. 3.8. We have used
the three small “hardware test cases” from Table 3.5, where 4 flows are sent between
ES1 and ES2 via SW1, 2 and 3. The three test cases differ in their flows’ periods and
deadlines, which are in the range of thousands of µs. The measurements were over
several minuets using an oscilloscope resulting in hundreds of thousands of samples.
The results are depicted in Table 3.5 where the columns 7 and 9 show the maximum
delay and jitter values reported by CACSS and the columns 8 and 10 show the maxi-
mum delay and jitter values measured on the hardware platform. The deviation of the

3.7 Related Work 89

measured and reported maximum E2E delay values is small and is less than 1 µs for
all the flows in all the test cases. Although, the measured maximum E2E jitter is non-
zero for all the flows in all the test cases, the values are very small, in the nanoseconds
range, without any effect on the the deadlines or the control performance.

Let us illustrate the small variations measured in E2E delay for the hardware test case 2
from Table 3.5. Fig. 3.11 shows the measured E2E latencies in all samples for each
flow, s1 to s4. The x-axis has the measured value of the E2E delay and the y-axis has
the number of samples in which this value was measured. Although, as mentioned, the
deviations are very small compared to the values reported by our CACSS, this shows
the importance of considering realistic assumptions in the problem formulation. Note
that the worst-case values of these variations can be added to the network precision δ

introduced in Sect. 3.5.2 in order to guarantee that deadlines are satisfied.

3.7 Related Work

There is already a lot of research on Fog Computing, focused mostly on aspects re-
lated to quality-of-service (QoS) [YLH+18, MKB18, MNY+18], with limited attention
to safety-critical and real-time applications such as those used in the industrial areas.
Real-time and safety-critical systems require guarantees for non-functional properties
such as timing, e.g., that the deadlines are satisfied. Also, control applications have to
fulfill non-functional properties related to control performance, e.g., QoC. Addressing
the QoC for control applications in the Fog is still an open issue, researchers investi-
gating the issue of degradation of control applications [ZHY16, ZSWY17, JX07]. For
example, [MAS+18] focuses on the routing and scheduling of messages of control ap-
plications to protect them form instability. The authors propose the control of the queue
gates status via GCLs with careful consideration of the non-determinism of messages.

However, the area of co-design of control and real-time is a well studied area [HZ19,
SDD12, MYV+04, PYKL11, BPZ02, SSS17] which have tackled the design of con-
trollers and scheduling of the control tasks and messages with respect to the control
performance. The co-design procedure involves designing of control applications such
that the controller is robust against degradation due to scheduling of the tasks and mes-
sages.

The control performance is not only affected by the scheduling of tasks but also affected
by the scheduling of messages in networks. On one hand, researchers have addressed
the configuration of communication aiming at increased control performance [WS12,
HZ19, Son09], but very few works address TSN. On the other hand, there is a lot of
work on routing and scheduling for TSN, see the discussion below, but none of these
works consider QoC. The work in [MAS+18] has considered routing and scheduling

90
Paper B: Communication Scheduling for Control Performance in

TSN-based Fog Computing Platforms

in Deterministic Ethernet, but lacks TSN-specific features which makes it difficult to
implement the results, and uses an SMT formulation that cannot optimize the solutions
and does not scale for large problem sizes. Our initial investigation in [MAS+18,
BZP20] addresses QoC and considers the particularities of TSN, but uses a simplified
model for control applications.

Researchers have addressed the routing and scheduling problems in TSN and have
employed different approaches for the optimization, such as heuristics, metaheuristics
and mathematical programming, e.g., ILP and Satisfiability Modulo Theories (SMT).

An example heuristic approach is [DN16], where the packets do not wait in switch
queues, called no-wait scheduling. The authors propose a Tabu Search metaheuristic
to optimize the flowspan which may become larger because of the no-wait schedul-
ing, and also let lower-priority traffic to use the residual bandwidth. Wisniewski et. al
in [WSJD15] increase the flexibility of the scheduling by employing a greedy-based
heuristic approach which is less resource demanding, and possible to be implemented
on industrial equipment on the field floor. The greedy-based heuristic approach is also
proposed in [AHM18], where authors aim to generate joint network routing and com-
munication scheduling that are fault-tolerant, within a reasonably short time. Arestova
et al. in [AHG20] propose a hybrid genetic algorithm for the communication schedul-
ing and network routing to find a near-optimal solution in a reasonable time, and
also optimizing the bandwidth to let more less-critical traffic transmitted. A heuris-
tic list scheduler for joint communication scheduling and network routing is proposed
in [PTO19], where multi-cast traffic and application distribution are allowed, and band-
width is optimized. The same problem is addressed in [PO18] where a genetic algo-
rithm is employed and in [GZRP18], where multiple traffic types are considered.

The use of SMT solvers for the communication scheduling is first proposed in [Ste10].
The author proposes a general method for off-line scheduling of communication and
uses the SMT solver as the back-end solver. The SMT-based model for TT-schedules
shows promising results and scales well with the problem size. Craciunas et al. in
[COCS16] propose an SMT model for the traffic scheduling which generates solutions
that are jitter-free and the number of used port queues in the network switches is mini-
mized. The authors also propose frame and flow isolation constraints and evaluate them
on several tests concerning the run-time and number of used queues. Craciunas et al.
derive general traffic regulating constraints for SMT solvers in [COSS17], which intro-
duces windows in GCLs and maps the frames to them. Another SMT model based on
“array theory encoding” is proposed in [SCS18a], where the authors see the GCL win-
dows as array elements, letting more relaxed scheduling with allowing jitter and having
fewer GCL entries. However, the implementation of the proposed method shows re-
source demanding. The trade-of between the GCL length and run-time is well studied
in [SCS18b].

The SMT-based schedulers are extended for the benefit of other applications. For ex-

3.8 Conclusions and Future Work 91

ample, in [PRCS16], authors combine traffic scheduling and network routing problem
to achieve the minimum delay for AVB traffic. The traffic scheduling combined with
task scheduling is studied in [CO16], where an SMT solver is employed to schedule
network messages and tasks on a networked computation platform which is equipped
with time-triggered network. Park et al. in [PSS19] proposes a generic algorithm
approach to schedule the communication in TSN where preemption is allowed. The
proposed algorithm shows increased reliability in the generated solutions. The com-
munication scheduling concerning the security of control applications is addressed
in [MAS+19] where the authors aim to increase the resilience of the control appli-
cations to malicious interference.

3.8 Conclusions and Future Work

In this paper, we have addressed the problem of scheduling real-time traffic via TSN
on an FCP, aiming at improving the performance of industrial control applications and
addressing the timing requirements of real-time applications. The scheduled traffic in
TSN is regulated through the Gate Control Lists (GCLs), which allow the transmission
of flows by opening and closing the switch gates.

We have proposed a Constraint Programming-based solution for determining the GCLs
such that the control performance (in terms of QoC) is maximized and the deadlines
are satisfied. The solution models the problem through a set of constraints and uses
an QoC analytical model inside the objective function for optimizing the solution. We
also employ a metaheuristic search strategy to drive the search faster towards good
quality solutions in a short time. Our CP solution for messages is extensible and can be
integrated with CP task scheduling models from the literature. In addition, we aimed at
introducing space in the timeline of message schedules, increasing thus the probability
of successfully integrating our GCLs with the tasks running on the end systems.

As the results show, the solution has successfully scheduled the flows in all test cases
and also achieved a good QoC for control applications. We have used OMNET++ and
JitterTime for validating the results and the performance of the QoC analytical model
proposed. We have also implemented the resulted GCLs on a TSN hardware platform.

92
Paper B: Communication Scheduling for Control Performance in

TSN-based Fog Computing Platforms

CHAPTER 4
Paper C:

Extensibility-Aware Fog
Computing Platform

Configuration for
Mixed-Criticality

Applications

Fog Computing integrates applications with mixed-criticalities in a shared platform.
Such applications need different approaches to guarantee their timing and dependabil-
ity requirements. In this paper, we consider that critical control applications and Fog
applications share a Fog Computing Platform (FCP). Critical control applications are
implemented as periodic hard real-time tasks and messages and have stringent timing
and safety requirements, and require safety certification. Fog applications are imple-
mented as aperiodic tasks and messages and are not critical. We formulate an opti-
mization problem for the joint configuration of critical control and Fog applications,
such that (i) the deadlines and Quality-of-Control (QoC) of control applications are
guaranteed at design-time, (ii) the configuration is extensible and supports the addition
of additional future new control applications without requiring costly re-certification,

94
Paper C: Extensibility-Aware Fog Computing Platform Configuration for

Mixed-Criticality Applications

and (iii) the design-time configuration together with the runtime Fog resource manage-
ment mechanisms, can successfully accommodate multiple dynamic responsive Fog
applications. We evaluate our approach on several test cases assuming scenarios for
hosting both Fog applications and future critical control applications. The results show
that our approach generates extensible schedules which enables Fog nodes to handle
Fog applications with a shorter response time and a larger number of future control
applications.

4.1 Introduction

Industrial systems rely on Operational Technology (OT), which uses dedicated hard-
ware and software in the computing platform, without support for dynamic changes and
online re-configurations [Eur16]. OT uses different types of fieldbus communication
solutions, e.g., Profibus [Comb] and EtherCAT [Coma], which are proprietary solu-
tions that support real-time control and data integrity; and processing elements, e.g.,
Programmable Logic Controllers (PLCs) and Industrial Personal Computers (IPCs),
which implement safety-related functions [JAAH18]. These technologies have limi-
tations in the principles of operation and capacity [JAAH18] and are costly for future
upgrades [Dec05]. Thus, the current OT infrastructure cannot deliver the innovations
envisioned with Industry 4.0 [GVCL14]. Although Information Technology (IT), such
as Cloud Computing and Artificial Intelligence (AI), can alleviate the limitations of OT,
they cannot be used at the edge of the network, where industrial machines are located,
and where very stringent nonfunctional properties have to be guaranteed [GVCL14].
Both industry and academia have made significant efforts towards the convergence of
OT/IT, which is required to realize the vision of Industry 4.0, e.g., increase the connec-
tivity, interoperability, and scalability of industrial systems [GLSC17]. This will bring
increased productivity and flexibility, mass customization, reduced time-to-market, im-
proved product quality, innovations, and new business models [BBM+16]. Fog Com-
puting is an architectural means to realize the OT/IT convergence [PRGS18].

Fog Computing has emerged as a promising paradigm for enabling applications in
various domains such as connected vehicles [BMZA12] and the Industrial Internet of
Things (IIoT) [CLL18]. According to this paradigm, the applications that demand
guarantees in safety, security, and real-time performance, are executed on a Fog Com-
puting Platform (FCP), which extends from the Cloud towards the edge of the network.
Other terms (e.g., Edge Computing) with similar objectives and principles are also used
for such platforms [Ope21a]. An FCP includes nodes capable of communicating and
executing computations, i.e., Fog Nodes (FNs), in the proximity of the “things” (e.g.,
machines) and data sources [KSLP19] to guarantee effective collaboration between the
devices, nodes, and the Cloud (see Fig. 4.1). An FN is a compute node that needs
to integrate mixed-criticality applications that share the FCP, with different timing-

4.1 Introduction 95

Figure 4.1: Fog Computing Platform: FNs (boxes), equipment and the Cloud are con-
nected via network (thick lines). Mixed-criticality applications are running
on FNs and in the Cloud [BP21a]

and safety-criticalities [BMZA12, BD18]. Hence, the challenge of handling mixed-
criticality applications on FCPs has to be addressed [LYD+17].

Mixed-criticality applications can be classified in several ways depending, e.g., on their
safety-criticality and time-criticality [BD18]. In safety-critical systems a failure may
lead to loss of life or damage to the environment or property. Such systems require pre-
release certification that employs safety assurance processes to show that the risks have
been properly identified and mitigated. Many safety-critical systems are also real-time,
where the correctness of the results depends also on the time when they are delivered,
e.g., deadlines have to be satisfied. Regarding time-criticality, real-time applications
can be hard real-time, where missing a deadline is considered a failure or soft real-time,
where deadline misses degrade the quality-of-service of the applications [Kop11].

At one extreme, we have the safety-critical real-time systems that control industrial
process and have to be operational even in the case of failure. Due to their safety
nature, such applications have to be certified. Safety Integrity Levels (SILs) are as-
signed to the different safety functions in a system and dictate the assurance and de-
velopment processes that have to be used. Certification standards require that safety
functions of different criticality levels are protected (isolated), so they cannot influence
each other [Int10], and the resources needed for their operation have to be statically
assigned pre-release. Any changes in their functionality or configuration will trigger
a costly re-certification. We call these applications “critical control applications”, and
they also need guaranteed control performance, captured via Quality of Control (QoC)

96
Paper C: Extensibility-Aware Fog Computing Platform Configuration for

Mixed-Criticality Applications

metrics. They are implemented using periodic hard real-time tasks running on FNs
and messages (transmitted as flows on the network) and they are allocated resources
via a static design-time configuration on the FNs and the network. System engineers
typically overprovision resources for these applications, which is costly, to allow the
addition of new safety functions without modifying the existing configurations.

At the other extreme, we have non-critical dynamic applications that do not have strin-
gent timing requirements. We make the key observation that to realize the vision of In-
dustry 4.0, such non-critical dynamic applications, e.g., related to new business model,
data analytics, software updates for security and maintenance, and connected equip-
ment services, which have not been considered at design-time, have to be hosted by an
FCP. Such “Fog applications” implement the innovative functionality needed to real-
ize Industry 4.0 on the converged OT/IT Fog infrastructure, without jeopardizing the
performance and safety of the critical control applications. These Fog applications are
aperiodic, i.e., their arrival-time is unknown, but the FCP should dynamically allocate
resources such that their quality-of-service (QoS) is maximized, e.g., their response
times are reduced. As a result, there is a tension between the resource requirements of
Fog applications that are only known at runtime, and those of critical control applica-
tions that have to be allocated at design-time.

This paper assumes that the OT/IT convergence has taken place via FCPs such as
[PZB+21, TTT21, Neb21], and hence FNs now replace the processing elements within
the industrial domain. For example, in [Neb21] FNs are used in robotic use cases and
can handle mixed-criticality applications. The FNs communicate with each other to
implement the required functionality and share the workload of the mixed-criticality
applications, and they communicate with the Cloud for exploiting its available re-
sources [Kar19]. We also assume that the FCP uses IEEE 802.1 Time-Sensitive Net-
working (TSN) [IEE21b] as a deterministic communication solution for communica-
tion, as envisioned by several industrial consortia [PRGS18]. TSN consists of a set of
amendments to the IEEE 802.1 Ethernet standard to provide features useful for real-
time and safety critical applications. TSN supports multiple traffic types, and hence, is
suitable for mixed-criticality applications running on an FCP.

As we discuss in Sect. 4.6 that covers the related work, researchers have proposed a
plethora of methods for the configuration of, on the one hand, critical control applica-
tions [BD18], and, on the other hand, Fog applications [PML+19]. However, their joint
configuration has received limited attention [BCP20]. The critical control applications
have to be assigned resources at design-time not only such that they meet their stringent
real-time and QoC requirements, but also that at runtime the Fog applications can be
easily accommodated.

Researchers have also considered the issue of extensibility in the context of Cyber-
Physical System (CPS) [WCP+05, PEPP04], i.e., statically configuring a CPS platform
such that resources are available periodically, e.g., slack in schedule tables, to accom-

4.1 Introduction 97

modate future applications without changing the existing configuration. Keeping ex-
isting configurations (e.g., assignment of tasks, routes of flows and their schedules)
unmodified is desirable since it preserves the performance level of the critical control
applications [BCP20] and does not require a costly re-certification of safety-critical
applications. However, the extensibility has not been addressed yet for FCPs that also
need to accommodate Fog applications at runtime.

In this paper we address the configuration of an FCP to support both critical control
applications and Fog applications. We consider these two extremes because they will
drive solutions that can support a wider range of applications, e.g., real-time applica-
tions that are not safety-critical, or Fog applications that may be periodic soft real-time
and benefit from maximizing their QoS. As mentioned, applications are composed of
tasks that interact via messages. We consider that the critical control applications are
configured at design-time and use static cyclic scheduling for both tasks and messages.
Such applications use redundancy to tolerate failures. Adding redundancy to a system
is orthogonal to the problems considered in the paper, e.g., by replicating hardware or
using rollback recovery for tasks [PIEP09] and by using re-transmission or redundant
routes for messages [RPC20]. We decide the mapping of tasks to the cores of the mul-
ticore FNs, the routing of flows, and the schedule tables for both tasks and messages.
The Fog applications are configured at runtime using migration mechanisms which will
decide the mapping of tasks and flows to the resources of the FCP available after the
configuration of control applications.

Contributions: The contributions of this paper are as follows. We motivate the need
for a novel configuration optimization approach for mixed-criticality applications run-
ning on an FCP. We assume that the platform uses partitioning to enforce the spa-
tial and temporal isolation between applications with different criticalities [BCP20].
We use a hierarchical scheduling model (Sect. 4.2.4) that can accommodate multiple
scheduling policies, targeting the different time-criticality requirements of applications.
The critical control applications are scheduled using static cyclic scheduling (i.e., they
are time-triggered) and the resources of the Fog applications are allocated at runtime
via fixed-priority servers that are dimensioned at design-time jointly with the criti-
cal application configurations. We consider that the critical control applications use
Scheduled Traffic (ST) for their flows, implemented via IEEE 802.1Qbv, which defines
a Time-Aware Shaper (TAS) mechanism that enables the scheduling of flows based on
a global schedule table. The flows of the Fog applications use Strict Priority (SP) flows
that are sent with lower priority in the gaps of the ST traffic schedule tables. We for-
mulate an optimization problem for the joint configuration of critical control and Fog
applications, such that (1) the deadlines and QoC of control applications are guaran-
teed at design-time, (2) the design-time FCP configuration is extensible and supports
the addition of a larger number of future new control applications, and (3) the design-
time configuration together with the runtime Fog resource management mechanisms,
can successfully accommodate responsive Fog applications.

98
Paper C: Extensibility-Aware Fog Computing Platform Configuration for

Mixed-Criticality Applications

We propose a Constraint Programming (CP)-based optimization strategy to synthesize
such optimized configurations. Synthesizing a design-time configuration means decid-
ing: (i) the mapping of critical control tasks to the cores of the FNs, (ii) the routing of
critical control flows, (iii) the schedule tables for critical control tasks and flows, (iv)
the slack in these schedule tables to increase their flexibility, and (v) the period and
budget of the fixed-priority servers that allocate resources at runtime to the Fog appli-
cations. At runtime, our approach handles (vi) the migration of Fog tasks to the FNs
that have resources for their execution, (vii) the scheduling of Fog tasks on the servers
and of flows on TSN. We evaluate our CP approach on several synthetic and realistic
test cases.

The rest of the paper is structured as follows. Sect. 4.2 presents our underlying sys-
tem model, and Sect. 4.3 presents the problem formulation. Afterwards, we present
our configuration approach in Sect. 4.4, and evaluate the performance of our proposed
approach in Sect. 4.5. Finally, Sect. 4.6 describes the related work, and Sect. 4.7 con-
cludes the paper.

4.2 System Models

The FCP model is presented in Sect. 4.2.1, and in Sect. 4.2.2 we present how TSN
works for scheduled and strict priority traffic. The critical control and Fog application
models are presented in Sect. 4.2.3 and Sect. 4.2.4 presents the scheduling policies
used to jointly schedule these mixed-criticality applications. Table 4.1 summarizes the
notation.

4.2.1 Architecture Model

The architecture is modeled as a directed graph G = {V,E}, where V = ES
⋃

SW is
the set of vertices and E ⊆ V ×V is the set of edges. A vertex νi ∈ V represents a
node in the architecture which can be an End-System (ES) (e.g., an FN, a sensor, an
actuator, or a machine), or a network Switch (SW). An ES is either the source (talker)
or the destination (listener) of an application flow, whereas an SW forwards the frames
of flows. All nodes have input (ingress) and output (egress) ports. We denote the set of
egress ports of a node with νi.P. A port p j ∈ νi.P is linked to at most one other node.
We denote the set of all FNs with N ⊂ V . Each FN Ni ∈ N has a multicore processor
and each core is denoted by C j ∈ Ni.C.

The set of edges E represents bi-directional full-duplex physical links. Thus, a full-
duplex link between the nodes νi and ν j is denoted with both εi, j ∈ E and ε j,i ∈ E ; a

4.2 System Models 99

Table 4.1: Summary of the notation

Symbol Notation
G Architecture graph

νi ∈ V Architecture node
Ni ∈N Fog Node
C j ∈ Ni.C A core
p j ∈ νi.P Egress port
q j ∈ pi.Q Priority queue
εi, j ∈ E Link

εi, j.s Link speed
εi, j.d(c) Link propagation delay
ri ∈R Route
|ri| Number of links in a route
H Hyperperiod

Wpi Periodic window
Wpi .c Window capacity
Wpi .t Window period
W j

pi .φ Window slice offset
γi ∈ Γ Critical control application

τ j ∈ γi.T Critical control task
τ j.t Critical control task period
τ j.d Critical control task deadline
τ j.c Critical control task WCET
τk

j .φ Critical control job offset
f j ∈ γi.F Critical control flow

f j.p Critical control flow priority
f j.c Critical control flow size
f j.t Critical control flow period
f j.d Critical control flow deadline
| fi| Number of critical control frames

f k
i,m.φ Critical control frame offset
M The task mapping function to the fog nodes

γ ′i ∈ Γ′ Fog application
τ ′j ∈ γ ′i .T Fog task

τ ′j.c Fog task workload
τ ′j. j Fog task arrival time

f ′j ∈ γ ′i .F Fog flow
f ′j.c Fog flow size
f ′j. j Fog flow arrival time
DCi Defferable server

DCi .c Server capacity
DCi .t Server period
D j

Ci
.φ Server slice offset

link is attached to one port of the node νi and one port of the node ν j.

Each link εi, j is characterized by the tuple 〈s,d〉 denoting the speed of the link in Mbit/s
and the propagation delay function of the link in ms. The propagation delay function of
a frame on a link εi, j.d(size) is calculated based the frame’s size, the physical medium
and the link length. The function d is a notation used in the constraints in Sect. 4.4.2
and it is attached to the link concept, i.e., ε.d(size) means d(ε,size).

A route ri ∈R, whereR is a set of routes, is an ordered list of links, starting with a link
originating from a talker node, and ending with a link to a listener node. The number
of links in the route ri is denoted with |ri|, and it starts from 2 since we assume there is
at least one SW in the route. We define the function u :R×N0→E to capture the jth

100
Paper C: Extensibility-Aware Fog Computing Platform Configuration for

Mixed-Criticality Applications

Figure 4.2: Example architecture with three end-systems and two switches: The or-
ange box shows the hierarchical scheduling model; the purple box shows
the migration mechanism [ATD19].

link of the route ri.

An architecture model with three ESs (consisting of one FN and two sensors) and two
SWs is presented in Fig. 4.2, where the thick lines are physical links. We also show
in the figure examples on how the notation is used. The FCP is envisioned to host
mixed-criticality applications which have to be separated from each other [PZB+21].
The separation is realized via temporal and spatial partitioning implemented via hyper-
visors [BCP20] which has not been considered in this paper. However, separation can
be introduced as additional constraints in our proposed CP model.

Additionally, the FCP is envisioned to handle Fog applications via monitoring and re-
source management techniques [PZB+21]. Once Fog applications are submitted to
run on the FCP, the Fog controller FN, which is determined at runtime using mecha-
nisms such as [KP17], receives the submission request. The Fog controller has knowl-
edge on the available resources on the FNs and SWs using the resource discovery
algorithms such as [KP17, Ope21b, Eur21] at runtime. It can decide on the place-
ment of application tasks on the FNs using a decentralized resource allocation tech-
nique [ATD19, SKR+18] which determines the FN that provides the minimum re-
sponse time for the application using response time analysis such as [Alm03]. The fog

4.2 System Models 101

Figure 4.3: TSN switch internals [BP21a].

controller also decides the routing of flows using a routing algorithm such as [GZPS17]
considering the available resources on SWs at runtime. The scheduling policies used
in the FCP are discussed in Sect. 4.2.4.

4.2.2 TSN Switch Model

A TSN switch consists of ingress ports, a switching fabric, priority queues, gates, a
Gate Control List (GCL) and egress ports, see Fig. 4.3. The switching fabric receives
flows from the ingress ports and forwards each flow to the egress port pi which is
determined by the predefined internal routing table. The egress port which has a set of
eight priority queues pi.Q (according to the IEEE 802.1Q standard [IEE14]), stores the
flow in a relevant priority queue q j ∈ pi.Q in First-In-First-Out (FIFO) order. A subset
of the priority queues is used for the ST and the remaining queues are used for the less
critical traffic, similar to [COCS16]. Each frame has a Priority Code Point (PCP) field
in the frame header that specifies the priority.

According to the 802.1Qbv standard, transmission of traffic from each queue is regu-
lated by an associated gate which opens and closes based on a predefined GCL which
contains the opening and closing time of the switch gates. Queued flows in a queue can
be transmitted when a gate is open and cannot be transmitted when gate is closed. The
scheduling relies on a clock synchronization mechanism 802.1ASrev [IEE17], which
defines a global notion of time.

Flows of critical applications are transmitted using ST based on GCLs and have a
higher priority. In this paper we assume that the GCLs are deterministic, i.e., the flows
are isolated from each other: Only the frames of one of the flows are present in a queue
at a time, see [COCS16] for details. Flows of Fog applications are lower priority and

102
Paper C: Extensibility-Aware Fog Computing Platform Configuration for

Mixed-Criticality Applications

are sent based on their priorities in the intervals of time (also called windows) when the
respective queue gates are open, i.e., when ST flows are not scheduled.

To this end, we define a periodic window Wp j on each port of the network nodes p j ∈
νi.P. Each window is characterized by the tuple 〈c, t〉 denoting the capacity and period
of the window in ms. Additionally, each window will have several instances which
are referred to as window slices, in a hyperperiod H (which is the system cycle, see
Sect. 4.2.3). We associate each window slice W j

pi with its start time φ .

4.2.3 Application Model

There have been several application models proposed in the literature, depending on
the periodicity and time-criticality of the applications [Kop11]. Our application model
consists of (i) a set of critical control applications considered at design-time, denoted
with Γ, which we capture using a periodic hard real-time task model, and (ii) a set of
Fog applications considered at runtime, denoted with Γ′, for which we use an aperiodic
best-effort task model.

Critical control applications consist of tasks which exchange massages and implement
control functions for controlling dynamical systems, see [BCP20] for more details. All
tasks and messages in a critical control application are periodic and have the same
period. Thus, we define a hyperperiod H which is a system cycle and equal to the least
common multiple of all application periods. Each critical control application γi ∈ Γ is
modeled with a Directed Acyclic Graph (DAG), where nodes represent tasks and edges
represent data flows between the nodes. The set of all tasks and the set of all flows in a
critical control application are denoted with γi.T and γi.F respectively.

A critical task τ j ∈ γi.T is characterized by the tuple 〈t,d,c〉 denoting the task period,
the task deadline and a known Worst-Case Execution Time (WCET) on the mapped FN
in ms. Each task is ready to execute when all its inputs have arrived. The output of a
task is produced upon the termination of the task. The mapping of tasks to the cores of
FNs is captured by the functionM which is determined by our proposed scheduling
algorithm. The task τi will have H/τi.t instances denoted with |τi| in a hyperperiod H
which are referred to as jobs denoted with τ

j
i . A job is associated with φ denoting the

start time of the job.

A critical flow fi ∈ γi.F is responsible for sending the frames that encapsulate the
data from an application and it is characterized by the tuple 〈p,c, t,d〉 denoting the
priority, the size in bytes, the period in ms, inherited from the originating task period,
and the flow deadline, i.e., the maximum allowed end-to-end delay in ms. Depending
on the period, the frames of a flow will have to be transmitted multiple times within
a hyperperiod, and we refer to each such transmission as an instance of a flow. The

4.2 System Models 103

Figure 4.4: Example application model with one critical control application and one
Fog application.

number of instances for a flow fi is denoted with | fi|, and is derived from the period of
the flow t and the hyperperiod H.

Each flow fi is transmitted via a route r j which is captured by the function z : F →R
that maps the flows to the routes. We assume that each flow is associated to only
one route but several flows may share the same route. We define a frame for each
instance 1 ≤ m ≤ | fi| of the flow fi and on each link 1 ≤ k ≤ |r j| of the route r j, and
denote it with f k

i,m. A frame f k
i,m is associated with φ denoting the start time of the

frame.

Each Fog application γ ′i ∈ Γ′ consists of a set of aperiodic tasks and a set of aperiodic
flows denoted by γ ′i .T and γ ′i .F , respectively. The tasks do not have data dependencies,
i.e., a task will start when it arrives, but they may exchange data asynchronously using
flows. A Fog task τ ′j ∈ γ ′i .T is denoted by the tuple 〈c, j〉 denoting the workload (which
is the average execution time) on the mapped core of FNs in ms and its arrival time in
ms. The arrival times and workloads of Fog tasks are unknown at design time. A Fog
flow f ′j ∈ γ ′i .F is also aperiodic. Such a flow is denoted by the tuple 〈c, j〉 denoting the
size in bytes and the arrival time in ms.

An example application model composed of two applications is shown in Fig. 4.4. γ1
is a critical control application and γ ′1 is a Fog application. The task and flow details
are given in the figure.

104
Paper C: Extensibility-Aware Fog Computing Platform Configuration for

Mixed-Criticality Applications

(a) Example use case with an FCP hosting
mixed-criticality applications.

(b) Optimization problem overview

Figure 4.5: An FCP hosting Fog applications and future control applications at run-
time.

4.2.4 Scheduling Policies

Mixed-criticality applications require different scheduling policies depending on their
timing criticality [But11]. Similar to related work, we use static cyclic scheduling
(timeline scheduling) for critical control applications, since this is a scheduling pol-
icy suited for hard real-time applications in safety-critical areas. Fog applications are
scheduled using a deferrable server [SLS95]. To put together several scheduling poli-
cies we use the hierarchical scheduling model [SL08], which consists of several levels
of schedulers, starting at level 1 where a single scheduler reserves resources to appli-
cations and schedulers at the next level, i.e., level 2 [SL03]. Because the hierarchi-
cal scheduling model is general, we can accommodate any combination of schedulers
needed by the mixed-criticality applications, in-between the two extremes: the static
scheduling of critical control applications versus the dynamic scheduling of Fog appli-
cations.

Our scheduling model employs a static scheduler at level 1 for scheduling control ap-
plications and a periodic fixed priority server at level 2. The scheduler at level 1 uses a
static cyclic scheduling, also known as time-triggered or timeline scheduling [But11].
A static cyclic schedule captures the start and finishing time of tasks and flows and
repeats with the hyperperiod H.

A fixed priority server is implemented as a periodic task DCi that runs in a core Ci and it
is characterized by the tuple 〈c, t〉 denoting the capacity of the server and the period of
the server in ms. Within a hyperperiod H, a server will have several instances which are

4.3 Problem Definition 105

referred to as server slices. Since level 1 uses static cyclic scheduling, the servers have
to be scheduled in the static schedule at design-time together with the control tasks.
Each server slice is denoted by D j

Ci
and is associated with φ denoting its start time.

We consider that the aperiodic Fog tasks are served by such servers, and we use a de-
ferrable server [SLS95], which uses soft resource reservation techniques to allocate its
resources to the Fog tasks. Fog application flows are transmitted using the TSN mech-
anisms specific for SP flows in the windows when ST critical flows are not scheduled,
see Sect. 4.2.2.

The servers and the future applications will use the slack introduced in the schedule
tables. We refer to the slack with the same notation used for the fixed priority server,
and use them interchangeably.

4.3 Problem Definition

We formally define the extensibility-aware configuration problem we address in the
paper as follows, see Fig. 4.5b for an illustration. Given (1) a set of critical control
applications Γ, (2) an FCP modeled with an architecture graph G, we want to determine
a configuration Ψ consisting of: (i) the mappingM of critical control tasks to the cores
of the FNs, (ii) the set of routesR of critical control flows, (iii) the static task schedule
tables, (iv) the GCLs, (v) the period and capacity of port windows Wpi , and (vi) the
period and capacity of the deferrable servers DCi . At runtime, our approach handles
(vii) the migration of Fog tasks to the FNs that have resources for their execution, (viii)
the scheduling of Fog tasks on the servers and of their flows on TSN.

We are interested in an optimized configuration Ψ such that: the deadlines of all the
critical control applications are met, the QoC of control applications, as defined in
Sect. 4.4.3, is maximized, and the extensibility of the configuration Ψ is maximized,
which supports adding future control applications without modifications to Ψ and en-
ables shorter response times for Fog applications.

Given a mappingM, synthesizing a static task schedule for the cores of FNs is equiv-
alent to determining (i) the critical control task offsets τ

j
i .φ , and (ii) the server slices’

offsets D j
Ci
.φ . Additionally, synthesizing GCLs for the ports of network nodes is equiv-

alent to determining (i) the critical frames’ offsets f k
i,m.φ , and (ii) the window off-

sets W j
pi .φ .

As a motivational example, let us consider an industrial use case with several robots
that uses an FCP architecture (see Fig. 4.5a). The critical control applications are re-

106
Paper C: Extensibility-Aware Fog Computing Platform Configuration for

Mixed-Criticality Applications

sponsible for the operation of robots, whose tasks and flows are implemented on the
FNs and TSN, respectively; the configuration for these tasks and flows is determined
at design-time. This static configuration is designed to ensure the correct functionality
of the safety-critical virtualized control on the FCP. In contrast to OT which uses over-
provisioned dedicated hardware and software to run implement the control, an FCP
platform should also be able to host Fog applications.

We consider that the system engineers would like to deploy a set of innovative Fog
applications for data analytics to optimize the industrial processes. They are deployed
on the FCP via one of the FNs or from the Cloud. Also, we assume that at some
time in the future, there is a need for extending the robot control, e.g., via an updated
pathfinder algorithm, see Fig. 4.5b. To minimize safety assurance costs, the new robot
control should be added to the FCP without modifying the existing configuration, since
modifications may trigger a costly re-certification. In addition, the Fog applications
must run on the FCP at runtime without modifying the statically defined configuration
for the control tasks and flows. Therefore, the static configuration should be extensible:
resources for possible extensions of critical control applications have to be added pre-
release and the resources that Fog applications use at runtime should be allocated at
design-time.

4.4 Proposed Solution

In this section, first, we describe our configuration optimization approach in detail and
present an overview of the objective, a valid solution, and the extensibility metrics.
Afterwards, we present the CP model and the CP constraints we use to solve the prob-
lem, in Sect.s 4.4.1 4.4.2, respectively. Finally, we define the objective function in
Sect. 4.4.3 and present our heuristic search methodology in Sect. 4.4.4.

Just the scheduling problem, in even simpler contexts, has been proved to be Non-
deterministic Polynomial time (NP)–complete in the strong sense [Sin07, Ull75]. We
propose an optimization strategy called Extensible Configuration Optimization Strat-
egy (ECOS), based on a CP formulation that uses search heuristics inside the CP solver,
aiming at finding solutions even for large problem sizes. Fig. 4.6 presents an overview
of ECOS which takes as the inputs the architecture model, and the application model;
and outputs a set of the best solutions found during search.

As mentioned, ECOS is based on a CP formulation. CP is a declarative programming
paradigm that has been widely used to solve a variety of optimization problems such as
scheduling, routing, and resource allocations. With CP, a problem is modeled through
a set of variables and a set of constraints. Each variable has a finite set of values, called
domain, that can be assigned to it (see Sect. 4.4.1). Constraints restrict the variables’

4.4 Proposed Solution 107

Figure 4.6: Overview of ECOS.

domains by bounding them to a range of values and defining relations between the
domains of different variables (see Sect. 4.4.2). The search aims to find good quality
solutions in a reasonable time, but it does not guarantee the optimality.

ECOS visits solutions that satisfy the constraints defined in Sect. 4.4.2 which are all
valid solutions; and evaluates them using the objective function defined in Sect. 4.4.3 to
check if the solution is an improving solution, i.e., better than the best solutions found
so far. The objective function introduces metrics for extensibility and QoC. In an
extensible solution, the slack is distributed in a way that is periodic, uniform and starts
early within a period. Moreover, in a good QoC solution, the input-output jitter of a
critical control application, i.e., variation in the end-to-end response of the application,
is minimized.

By default, the CP solver systematically performs an exhaustive search by exploring all
the possibilities of assigning different values to the variables. However, such a search
is intractable for NP-complete problems, therefore we instead employ a metaheuristic
search, see Sect. 4.4.4.

4.4.1 CP model

We define seven sets of decision variables for the CP model. Each decision variable is
associated with a domain from which the CP solver decides the variable’s value. The

108
Paper C: Extensibility-Aware Fog Computing Platform Configuration for

Mixed-Criticality Applications

decision variables and their domain for flows and windows are defined by

∀γi ∈ Γ,∀ f j ∈ γi.F ,∀m ∈ [1, .., | f j|],
∀l ∈ [1, .., |rk|],rk = z(f j),εv,w = u(rk, l) :

0≤ f k
j,m.φ × εv,w.s≤ (f j.t× εv,w.s− f j.c)

∀νi ∈ V,∀p j ∈ νi.P,∀m ∈ [1, ..,H/Wp j .t] :

0≤W m
p j
.φ ≤ (Wp j .t−Wp j .c)

(4.1)

where, the frame offsets’ domain is the range of 0 to the time point when the frame has
enough time to be transmitted within the frame period. The domain for window slice
offsets is in the range of 0 to the time point when the slice accesses its capacity within
its period.

For task scheduling, the decision variables are associated with the job offsets and the
server slice offsets on cores of FNs. The variables and their domains are defined in
Eq. (4.2) where the job offsets’ domain is in the range from 0 to the time point when a
duration equal to job’s WCET is left within its period. Similarly, the domain for server
slice offsets is in the range of 0 to the time point when the slice accesses its capacity
within its period.

∀γi ∈ Γ,∀τ j ∈ γi.T ,∀m ∈ [1, .., |τi.t|] :
0≤ τ

m
j .φ ≤ (τ j.t− τ j.c)

∀Ni ∈N ,∀C j ∈ Ni.C,∀m ∈ [1, ..,H/DC j .t] :

0≤ Dm
C j
.φ ≤ (DC j .t−DC j .c)

(4.2)

The mapping functionM which captures the mapping of tasks to the cores of FNs is
also defined as a decision variable. The domain and the co-domain of the function is
defined in Eq. (4.3) where the function domain is the set of all tasks in the application
model and the function co-domain is the set of all cores of FNs.

M : X −→ Y :
X = {τi|τi ∈ γ j.T ,γ j ∈ Γ} Y = {Ci|Ci ∈ N j.C,N j ∈N}

(4.3)

4.4 Proposed Solution 109

4.4.2 CP Constraints

Flow Constraints: We define five constraints similar to [BP21a] that regulate the net-
work traffic and relate the domain of the CP variables. CP only finds the feasible
solutions, i.e., those where all the constraints are met.

The Link Overlap constraint imposes the restriction on the solution which avoids shar-
ing a physical link resources with more than one frame or window slice at any time.
The constraint is defined in Eq. (4.4). Note that as presented in Sect. 4.2.1, each link
is attached to one port of the source and one port of the destination. Thus, a port is
equivalent to a link.

∀γi,γ j ∈ Γ,∀ fk ∈ γi.F ,∀ fl ∈ γ j.F ,k 6= l,

∀m ∈ [1, .., | fk|],∀n ∈ [1, .., | fl |],
ro = z(fk),∀q ∈ [1, .., |ro|], rp = z(fl),∀x ∈ [1, .., |rp|],
pv,w ≡ εv,w = u(ro,q) = u(rp,x),

∀y ∈ [1, ...,H/Wpv,w .t] :

((f q
k,m.φ +m× fk.t ≥ f x

l,n.φ +n× fl .t +
fl .c

εv,w.s
)∨

(f x
l,n.φ +n× fl .t ≥ f q

k,m.φ +m× fk.t +
fk.c

εv,w.s
))∧

((f q
k,m.φ +m× fk.t ≥W y

pv,w .φ + y×Wpv,w .t +Wpv,w .c)∨

(W y
pv,w .φ + y×Wpv,w .t ≥ f q

k,m.φ +m× fk.t +
fk.c

εv,w.s
))

(4.4)

The Route constraint enforces the ordered propagation of a frame concerning its as-
sociated route from its talker all the way to its listener. We define the constraint in
Eq. (4.5) where δ is the network precision that is the worst-case difference between
the nodes clock in the network according to the 802.1AS clock synchronization mech-
anism [IEE17].

∀γi ∈ Γ,∀ f j ∈ γi.F ,∀m ∈ [1, .., | f j|],∀k ∈ [1, .., |rl |),
rl = z(f j),εv,w = u(rl ,k),εw,x = u(rl ,(k+1)) :

f k+1
j,m .φ ≥ f k

j,m.φ +
f j.c

εv,w.s
+ εv,w.d(f j.c)+δ .

(4.5)

We define the Isolation constraint in Eq. (4.6) to avoid displacement of frames in dif-

110
Paper C: Extensibility-Aware Fog Computing Platform Configuration for

Mixed-Criticality Applications

ferent switch queues. The constraint imposes the restriction on any two same-priority
frames on the same link not to arrive at the ingress port of a switch simultaneously. In
other words, either a frame is received after or before any other frame on the same link,
or the different priority frames on the same link are received at the same time. This con-
straint enforces the order of frame transmission in the switch schedules, see [COCS16]
for more details. In Eq. (4.6), δ represents the network precision.

∀γi,γ j ∈ Γ,∀ fk ∈ γi.F ,∀ fl ∈ γ j.F ,k 6= l,

∀m ∈ [1, .., | fk|],∀n ∈ [1, .., | fl |],
ro = z(fk),∀q ∈ (1, .., |ro|], rp = z(fl),∀x ∈ (1, .., |rp|],
εv,w = u(ro,q) = u(rp,x),

εa,v = u(ro,q−1),εb,v = u(rp,x−1) :

((f q
k,m.φ +m× fk.t +δ ≤ f x−1

l,n .φ +n× fl .t + εb,v.d(fl .c))∨

(f x
l,n.φ +n× fl .t +δ ≤ f q−1

k,m .φ +m× fk.t + εa,v.d(fk.c)))∨

(fk.p 6= fl .p).

(4.6)

The Flow Deadline constraint defined in Eq. (4.7) imposes the restriction that a flow
is received by its listener within its deadline. This constraint is equivalent to that the
time interval between the scheduled transmission of a stream from its talker and the
reception of it by the listener is smaller than its deadline.

∀γi ∈ Γ,∀ f j ∈ γi.F ,∀m ∈ [1, .., | f j|],rn = z(f j),

εa,b = u(rn,1),εy,z = u(rn, |rn|) :

f 1
j,m.φ + f j.d ≥ f |rn|

j,m .φ +
f j.c

εy,z.s
.

(4.7)

Task Constraints: We define three constraints for task scheduling on cores of FNs
in the architecture model which relates the domain of the CP variables. A feasible
solution meets all the constraints.

The Core utilization constraint avoids over utilization of cores. The constraint is de-
fined in Eq. (4.8) where the utilization of all tasks and the server mapped to the same

4.4 Proposed Solution 111

core is calculated.

∀Ni ∈N ,∀C j ∈ Ni.C,T = {τk|M(τk) = C j,τk ∈ γl ,γl ∈ Γ} :

DC j .c
DC j .t

+
τ∈T

∑ (
τ.c
τ.t

)≤ 1
(4.8)

The Task Overlap constraint imposes the restriction on the solution not to allow a core
to run more than one job or server slice at a time. The constraint is defined in Eq. (4.4).

∀γi,γ j ∈ Γ,∀τk ∈ γi.T ,∀τl ∈ γ j.T ,k 6= l,

∀m ∈ [1, .., |τi.t|],∀n ∈ [1, .., |τi.t|],
Co =M(τk) =M(τl),∀y ∈ [1, ...,H/DCo .t] :
((τm

k .φ +m× τk.t ≥ τ
n
l .φ +n× τl .t + τl .c)∨

(τn
l .φ +n× τl .t ≥ τ

m
k .φ +m× τk.t + τk.c))∧

((τm
k .φ +m× τk.t ≥ Dy

Co
.φ + y×DCo .t +DCo .c)∨

(Dy
Co
.φ + y×DCo .t ≥ τ

m
k .φ +m× τk.t + τk.c))

(4.9)

The Deadline constraint defined in Eq. (4.10) imposes the restriction that a job pro-
duces its outputs within its deadline.

∀γi ∈ Γ,∀τ j ∈ γi.T ,∀m ∈ [1, .., |τ j.t|] :
τ

m
i .φ + τi.c≤ τi.d.

(4.10)

Application Constraints: We define four constraints for handling the data depen-
dency between tasks and flows of an application which is modeled with a DAG, see
Sect. 4.2.3. To this end, we define four functions capturing the task and flow prece-
dence.

The function J T
τ : γ.T −→ γ.T takes an application task as the input and returns a

set of tasks which have precedence over the input task within the same application.
Similarly the function J F

τ : γ.T −→ γ.F takes an application task as the input and
returns a set of flows, the function J T

f : γ.F −→ γ.T takes an application flow as the
input and returns a set of tasks, and the function J F

f : γ.F −→ γ.F takes an application
flow as the input and return a set of flows, all within the same application.

112
Paper C: Extensibility-Aware Fog Computing Platform Configuration for

Mixed-Criticality Applications

The Task Precedence over Task constraint is defined in Eq. (4.11) and enforces that in
an application and within a period, each task is executed after all the tasks determined
by the function J T

τ produce their outputs.

∀γi ∈ Γ,∀τ j ∈ γi.T ,∀τk ∈ J T
τ (τ j),

∀l ∈ [1, .., |τ j.t|],∀m ∈ [1, .., |τk.t|] :

τ
l
j.φ ≥ τ

m
k .φ + τk.c

(4.11)

The flows’ precedence over each task is regulated using the Flow Precedence over Task
constraint defined in Eq. (4.12). The constraint avoids executing each task before all
the flows decided by the function J F

τ have arrived, within a period.

∀γi ∈ Γ,∀τ j ∈ γi.T ,∀ fk ∈ J F
τ (τ j),

∀l ∈ [1, .., |τ j.t|],∀m ∈ [1, .., | fk.t|],
ro = z(fk),εa,b = u(ro, |ro|) :

τ
l
j.φ ≥ f |ro|

k,m .φ +
fk.c

εa,b.s

(4.12)

Similarly, the Task Precedence over Flow constraint defined in Eq. (4.13) regulates the
precedence of tasks determined by the function J T

f over each flow. Upon the output
production of all determined tasks, the flow is scheduled for transmission.

∀γi ∈ Γ,∀ f j ∈ γi.F ,∀τk ∈ J T
f (f j),

∀l ∈ [1, .., | f j.t|],∀m ∈ [1, .., |τk.t|],
ro = z(f j),εa,b = u(ro,1) :

f 1
j,l .φ ≥ τ

m
k .φ + τk.c

(4.13)

Eq. (4.14) defines the Flow Precedence over Flow constraint which regulates the trans-

4.4 Proposed Solution 113

mission of a flow that is data dependent to a set of flows determined by the functionJ F
f .

∀γi ∈ Γ,∀ f j ∈ γi.F ,∀ fk ∈ J F
f (f j),

∀l ∈ [1, .., | f j.t|],∀m ∈ [1, .., | f j.t|],
rn = z(f j),ro = z(fk),

εa,b = u(rn,1),εv,w = u(ro, |ro|) :

f 1
j,l .φ ≥ f |ro|

k,m .φ +
fk.c

εv,w.s

(4.14)

4.4.3 Objective function

The CP solver propagates the constraints all over the search space and removes the
unfeasible solutions (which do not satisfy the constraints) from the search space that
results in the creation of the solution space. Afterwards, the CP solver picks the first
solution from the solution space and determines the value of the objective function
for the solution. The CP solver searches for better solutions in terms of the objective
function until no such solutions can be found.

We define the objective function Ω in Eq.(4.15). The terms Θ1 and Θ2 in the equation
capture the analytical QoC and the extensibility, respectively. The weight β controls
the trade-off between QoC and extensibility towards finding a solution with either a
better QoC or a shorter response time for Fog applications. The weight β is between 0
to 2, where a larger β drives the search towards response time optimized solutions.

Ω = Θ1 +β ×Θ
−1
2 (4.15)

Analytical QoC CP model: In this work, we are interested in finding the solutions
which have better QoC (see [CPBM19] for more information on the QoC and see [BCP20,
BP21a] for more information on the schedule optimization for the QoC). Since calcu-
lating the QoC needs a simulation of the control application’s behavior and the integra-
tion of QoC calculation tools such as JitterTime in the CP model are not feasible due
to large runtimes, we have adapted the analytical QoC model proposed in [BP21a] and
integrated it into our CP model.

The model formulates the QoC as: (i) minimum jitter for end-to-end input-output flows,
(ii) maximum delay between reception of the input flow and transmission of the output
flow, called task execution interval, and (iii) minimum jitter for the task execution
interval.

114
Paper C: Extensibility-Aware Fog Computing Platform Configuration for

Mixed-Criticality Applications

The analytical QoC CP model is formulated in Eq. (4.16), where γi is a critical control
application and the terms θ1 captures the input flow delay, θ2 the output flow delay, θ3
models the input flow jitter, θ4 the output flow jitter, and θ5 the task execution interval
jitter. The range of all the θ terms is from 0 for no delay/jitter to 1 for a delay/jitter
equal to the control application’s period. The delay vs. jitter trade-off is controlled by
the weight β1 which can direct the search towards either optimized delay or optimized
jitter, concerning the type of the control applications. A larger β1 value drives the
search towards smaller jitter. As proposed in [BP21a], the β1 value is determined using
JitterTime.

∀ f j ∈ J f
t (τ1),∀ fk ∈ γi.F \J f

t (τ1),τ1 ∈ γi.T
∀m,q ∈ [1, .., | f j|],∀n,u ∈ [1, .., | fk|],
ro = z(f j),rp = z(fk) :

θ1 = ∑
f |ro|

j,m .φ

f j.t
θ2 = ∑

fk.t− f 1
k,n.φ

fk.t

θ3 = ∑
| f |ro|

j,m .φ − f |ro|
j,q .φ +(m−q)× f j.t|

f j.t

θ4 = ∑
| f 1

k,n.φ − f 1
k,u.φ +(n−u)× fk.t|

fk.t
θ5 =

∑
| f |rp|

k,m .φ − f |rp|
k,q .φ + f 1

j,q.φ − f 1
j,m.φ +(m−q)× f j.t|

f j.t

Θ1 = θ1 +θ2 +β1× (θ3 +θ4 +θ5)

(4.16)

Analytical extensibility CP model: This paper assumes using periodic slacks in the
static task schedule for hosting Fog tasks and future critical control tasks; and periodic
windows in queue gates for sending Fog flows and future critical control flows. We are
interested in finding a distribution of the slacks and windows that provides a shorter
response time for Fog applications and host a larger number of critical control applica-
tions. There are different techniques in the literature for analysis and determining such
a distribution of the slacks and windows [WCP+05, ZYS+09, Alm03, LB03].

The typical technique is to first, calculate the required capacity, and then, determine the
slack and window distribution that uses the least system resources and is able to provide
the required capacity, at any time [BLAC05]. A common method for the calculation of
the required capacity is the “submission load technique” [ABR+93]. Thus, we define a
general Load function L(t) in Eq. (4.17) for the required capacity calculation at time t.
In Eq. (4.17), the function u(t−a) is a delayed unit step function, n is the total number

4.4 Proposed Solution 115

of tasks and flows in an application, jk is the arrival time of the tasks and the flows, and
ck is the required capacity, i.e., the task workload and the message transmission time.

L(t) =
n

∑
i=1

i

∑
k=1

u(t− jk)× ck (4.17)

There are also different techniques for calculating the reserved resources in the real-
time theory such as “server characteristic function” proposed in [LB03], “server supply
function” proposed in [FM02], and “availability function” proposed in [Alm03]. We
define the “Availability function” A(t) in Eq.(4.18), where the function r(t − a) is a
delayed unit ramp function, S.t is the slack/window period, S.c is the slack/window
capacity, and the Si.φ is the offset of the ith slack/window slice.

A(t) =
d t

S.t e

∑
i=1

(r(t−α1)− r(t−α2))

α1 = j×S.t +Si.φ α2 = α1 +S.c

(4.18)

0 2 4 6 8 10 12
time (ms)

0

1

2

3

4

5

6

7

w
o

rk
lo

a
d

 /
 c

a
p

a
c
it

y
 (

m
s
)

Availability D
1

Availability D
2

Load

Figure 4.7: Example server availability and load: The server D1 (blue curve) provides
a shorter response time comparing to the server D2 (red curve) for the
known application load (black curve).

116
Paper C: Extensibility-Aware Fog Computing Platform Configuration for

Mixed-Criticality Applications

Once the load function and the server availability function are known, the response
time Res can be calculated using Eq. (4.19) as proposed in [Alm03]. The equation
Eq. (4.19) can be solved using iterative procedure starting at t = 0 until Resn+1 and Resn

converge. As mentioned, for Fog applications we focus on finding the solutions that
provide a shorter response time, and for future critical control applications solutions
that can host a larger number of applications without missing their deadlines. Such an
analysis can also be used for future critical control applications as long as the deter-
mined response time is smaller than the deadlines.

Res =Ainv(L(Res)) (4.19)

However, the presented analysis and design approach can not be employed at design-
time since a prior knowledge on Fog applications and future critical control applications
is not available (they arrive at runtime). To this end, we use the idea of the availability
function in Eq. (4.18) and the extensibility metric presented in [BKA+20] to define an
analytic extensibility CP model in Eq. (4.20), where S.t is the slack/window period, S.c
is the slack/window capacity, and the Si.φ is the offset of the ith slack/window slice.
This analytic model calculates the accumulated reserved resources within a hyperpe-
riod, capturing the distribution of the slack/window slices.

Θ2 =
n×S.c

2
× ((n+1)×S.t−S.c)

−
n

∑
i=1

S.c×S j.φ , n =
H
S.t

(4.20)

We give an example Fog task handling problem in Fig. 4.7 where the black curve is
the load function, the blue curve is the server D1 availability function, and the red
curve is the server D2 availability function. The load function is calculated for the
application γ ′1 consisting of three tasks specified as τ ′1〈1,2〉, τ ′2〈2,3〉, and τ ′3〈2.5,9〉.
The servers D1〈2,4〉 and D2〈4,7〉 have 7 and 4 server slices, respectively. For all slices
of server D1 and server D2, the offsets are D j

1.φ = 0 and D j
2.φ = 3 ms.

We used the function in Eq. (4.19) to calculate the server’s response time for the given
tasks. Although the server D2 has a higher utilization (57% comparing to 50% of the
server D1), it provides a loner response time for all tasks which is 3.5 ms (comparing
to 3 ms of the server D1). Thus, the server D1 is a better choice as our proposed
extensibility CP model approves. Our proposed extensibility CP model in Eq. (4.20)
calculates the extensibility values of 210 and 200 for servers D1 and D2, respectively.
As the example shows, our proposed analytic extensibility CP model has successfully
determined the best server configuration, i.e., that provides the shorter response time.

4.5 Evaluation 117

4.4.4 Search Strategy

In this work we used the Google OR-Tools [Goo21] as the CP solver which is con-
figured to use a metaheuristic as the search strategy. A search strategy specifies the
order of selecting the CP model variables for assignment and the order of selecting the
values from the domain of a variable. The metaheuristic strategy does not guarantee
optimality, but it is effective in finding good quality solutions in a reasonable time.

We used the same metaheuristic strategy as presented in [BZP20, BP21a] based on a
Tabu Search metaheuristic algorithm [BK05], which aims to avoid the search process
being trapped in a local optimum by increasing diversification and intensification of the
search. We apply the metaheuristic strategy to all set of variables in the CP model. In
this strategy, once a task or flow is scheduled with the respective minimum objective
value, it is treated as keep variables whose values should not be changed.

4.5 Evaluation

This section is structured as follows: we first describe our evaluation setup and the
test cases in Sect. 4.5.1. Afterwards, we evaluate our proposed ECOS method for its
ability to support future critical control applications (Sect. 4.5.2) and to accommodate
Fog applications (Sect. 4.5.3). Finally, we evaluate the performance of ECOS on a
realistic test case where we consider scenarios of upgrades with future critical control
applications and migrations of Fog applications (Sect. 4.5.4).

4.5.1 Test Setup and Scenarios

Our proposed ECOS approach is implemented in C# using Google OR-Tools [Goo21]
as the CP solver and it is run on a computer with an i9 CPU at 3.6 Ghz and 128 GB of
RAM. We limited the search in CP solver for a duration of 15 to 120 minutes depending
on the test case size and the scenario. We assumed that all links have a speed of 1 Gbit/s.

We have generated ten synthetic test cases with critical control applications that have
progressively larger number of tasks and flows, whose details are given in Table 4.2.
The columns 2, 3, 4, 5 and 6 in the table show the total number of critical control
applications, tasks, flows, ESs, and SWs for the test cases, respectively. Each critical
control application implements an LQG control function which is designed with Jitter-
bug [LC02] for controlling plants in the form of Eq. (4.21) where a and b are randomly

118
Paper C: Extensibility-Aware Fog Computing Platform Configuration for

Mixed-Criticality Applications

Table 4.2: Details of ten critical control (CC) synthetic test cases

Total no. Total no. Total no. Total Total Mean util.
of CC of CC of CC no. of no. of of CC
apps tasks flows ESs SWs apps

1 5 17 11 3 1 34%
2 7 20 14 5 1 39%
3 10 24 18 7 2 42%
4 12 26 20 9 2 44%
5 15 28 25 11 2 48%
6 18 30 30 13 3 51%
7 20 34 34 15 3 53%
8 23 36 38 17 3 56%
9 27 40 45 19 4 59%
10 30 42 45 21 4 61%

chosen respectively from [50,100,150] and [100,200,300,400] (see [BCP20] for more
details).

G =
a

s2 +b
(4.21)

The critical control flows are generated randomly with message sizes to fit in single
MTU-sized frames. The tasks are also generated with random WCETs. Tasks and
flows of each critical control application have equal periods and deadlines in the form
of 2n ms, n = {0,1,2,3,4}. The column 7 in the table shows the mean utilization of
critical control applications which is the average of tasks’ CPU utilization and flows’
bandwidth utilization.

4.5.2 Supporting future control applications

We were first interested to evaluate the ability of ECOS to generate configurations that
allow updates, i.e., the addition of future critical control applications with no changes to
the current configuration. For this purpose, we created for each test case in Table 4.2 a
scenario where critical control applications have to be added in the future. As depicted
in Table 4.3, columns 2 and 3 show for each scenario the total number of tasks/flows,
and mean utilization of the applications, respectively.

Together with ECOS, we evaluated a version, called ECOS/E that does not optimize for

4.5 Evaluation 119

Table 4.3: Evaluation results on synthetic test cases

TC Total no. of Mean util. of Percentage of RT2of Fog application 1 RT2of Fog application 2 RT2of Fog application 3
tasks / flows FCCAs1 Supported Tasks: 16 Tasks: 21 Tasks: 35
in FCCAs1 FCCAs1 Flows: 15 Flows: 20 Flows: 38

ECOS ECOS/E ECOS ECOS/E ECOS ECOS/E ECOS ECOS/E
1 36/58 57% 100% 78% 1.33 3.97 2.82 5.66 4.73 7.43
2 37/65 55% 100% 89% 1.42 1.91 2.75 4.92 6.74 9.56
3 30/20 50% 100% 96% 1.26 3.36 2.94 4.88 5.16 12.29
4 29/32 45% 100% 81% 2.17 3.27 3.64 5.65 5.18 7.34
5 33/40 44% 100% 96% 1.56 4.14 3.68 5.81 4.36 9.44
6 44/45 40% 100% 90% 1.47 2.96 3.14 4.17 4.96 5.82
7 37/35 39% 100% 83% 1.19 3.95 3.88 3.96 2.96 4.76
8 33/34 37% 100% 90% 2.18 2.93 3.14 5.84 2.84 9.64
9 25/28 31% 100% 98% 1.65 3.77 4.43 5.93 2.35 4.74
10 18/21 27% 100% 82% 2.37 3.79 4.82 5.97 2.85 6.68

Average 100% 87% 1.6 3.4 3.5 5.2 4.2 7.7
1 Future Critical Control Application
2 Response time in ms.

extensibility, i.e., it does not consider the extensibility term Θ2 in the cost function Ω

and instead optimizes only for QoC term Θ1. For the configurations obtained with
ECOS and ECOS/E on each test case, we used again ECOS to add the future critical
control applications for the respective test case, considering that the configuration of the
initial critical control applications cannot be changed. This is to avoid re-certification,
as discussed in Sect. 4.1.

Since an extensible configuration aims to support future critical control applications,
i.e., their tasks and flows have no missed deadlines, we show in columns 4 and 5 of Ta-
ble 4.3 the percentage of supported tasks and flows in ECOS and ECOS/E, respectively.
The conclusion is that ECOS can better support future critical control applications by
considering the extensibility of the configurations during their optimization. The main
message is that without considering the extensibility, i.e., using ECOS/E, none of the
future upgrades can be performed; all values in column 5 under are below 100%, show-
ing that the upgrades are not accommodated. As the results show, only ECOS can
add all the future critical control application. In some cases, ECOS shows that it can
support 23% more tasks and flows compared to ECOS/E. Thus, ECOS shows a good
performance in supporting future control applications that avoids re-certification costs.

4.5.3 Response time analysis of Fog applications

We were also interested to evaluate the ability of ECOS to accommodate Fog applica-
tions. Hence, we created for each test case in Table 4.2 a scenario with three sets of Fog
applications that will need to be hosted by the FCP at the same time with the critical
control applications. Each set of Fog applications consists of different number of tasks
and flows with random arrival times, flow sizes, and task workloads. Their details are

120
Paper C: Extensibility-Aware Fog Computing Platform Configuration for

Mixed-Criticality Applications

presented in columns 6 to 11 of Table 4.3. We simulate their migration to the FNs of
the FCP considering the migration mechanism from Sect. 4.2.1. Fog flows in Table 4.3
are Best Effort and are using the SP traffic type, as discussed in Sect. 4.2.2.

Similar to the previous section, we evaluated ECOS against ECOS/E, where exten-
sibility has not been considered. Thus, as in the previous section, we used ECOS
and ECOS/E to generate optimized configurations for each test case. As discussed in
Sect. 4.3, we are interested to host Fog applications with the shortest response times.
ECOS uses the extensibility terms Θ2 in the cost function Ω to favor solutions that are
extensible, i.e., they have well-dimensioned servers and windows for Fog applications.

Columns 6 to 11 in Table 4.3 report the mean response time of Fog applications under
the respective configuration using the Eq. (4.19) in ms. As we can see from Table 4.3,
by considering the extensibility when creating the configurations at design-time, we are
able to accommodate Fog applications at runtime with reduced response times with an
average 43%. In some test cases, such configurations generated by ECOS could reduce
the response time by 3.71 ms (see test case 3) and improve the response time by 51%
(see test case 1). When ECOS/E is used, we can see that the response times for most
Fog applications are much larger. That is because although the total resources available
to the Fog applications are the same in both the ECOS and ECOS/E configurations, the

Table 4.4: Fog-based pharmaceutical production line

App Apps No of Bandwidth CPU
set Tasks / flows util. util.

Agitator 6 / 5 0.7% 8%
Critical Boiler 3 / 4 0.4% 7%
control Chiller 5 / 7 0.7% 10%

app Coater 9 / 13 1.1% 11%
Pulverizer 8 / 9 0.6% 12%

Tablet printer 14 / 15 1.2% 18%
Conveyor 15 / 21 1.5% 21

Future Heat exchanger 6 / 8 0.9% 11%
critical Sifters 9 / 10 1.1% 17%
control Cartoners 7 / 10 0.8% 9%

apps Sealer 10 / 12 0.9 9%
Label check 5 / 8 NA1 NA1

Fog Machine maintenance 12 / 13 NA1 NA1

apps Air quality check 15 / 12 NA1 NA1

Stock check 8 / 4 NA1 NA1

Safety check 8 / 14 NA1 NA1

1 Not Applicable

4.6 Related Work 121

deferrable servers and communication windows, which allocate the available resources
to Fog applications, are not well dimensioned in the case of ECOS/E, and hence cannot
be used at runtime. This shows the importance of configuring for extensibility in the
Fog.

4.5.4 Extending with upgrades

The next question we were interested to answer is if this ability of ECOS to accom-
modate Fog applications holds when we add future critical control applications. This
scenario is adopted form industrial settings where upgrades in the form of future crit-
ical control applications are introduced while the ability of the FCP to host Fog ap-
plications are still needed. To this end, we present a realistic test case where a set of
critical control applications as shown in Table 4.4 are considered at design-time. The
test case consists of 4 ESs and 6 SWs implementing a pharmaceutical production line.
We use ECOS to generate an extensible FCP configuration at design-time for these ap-
plications. In this configuration the mean utilization of critical control applications is
47%, and the FCP is able to host Fog applications (see their details in Table 4.4) with a
response time of 3.6 ms.

Once a set of future critical control applications with a mean utilization of 26% are
introduced as an upgrade (see Table 4.4), we again use ECOS to accommodate this up-
grade. In the upgraded configuration, the slack which has been diminished for hosting
Fog applications, since part of it has been assigned to run the future critical control
applications. When adding these future control applications, ECOS has also optimized
the new upgraded configuration for extensibility. As we can see, ECOS was able to
update the configuration to still accommodate the Fog applications in Table 4.4, at the
cost of a small increase in their response times, i.e., 1.76 ms. Note that in practice
these response times will be smaller, because the critical control tasks will not execute
for their WCET. Instead, they will finish earlier than WCET, and as we discussed in
Sect. 4.2.4, the servers will use at runtime the freed computational resources.

4.6 Related Work

There has been a lot of work in the literature for scheduling in mixed-criticality systems
and several methods have been proposed, such as hierarchical scheduling [WZS+14],
task partitioning and scheduling [LRL09], container-based scheduling [YLL18], and
mixed traffic schedulers [ZS00] for flows in particular. Nevertheless, we focus on de-
signing for extensibility in mixed-criticality systems.

122
Paper C: Extensibility-Aware Fog Computing Platform Configuration for

Mixed-Criticality Applications

Designing for evolvability and extensibility in computer systems has also been ad-
dressed in the literature [GRS96, RLL94]. Extensibility is defined as an ability that en-
ables future upgrades and changes in computer systems [RRW+03]. These changes and
upgrades can be implemented in different ways such as introducing new applications,
migrating applications across processing nodes, and changes in required resources. An
extensible system is designed in a way that accommodating changes and upgrades does
not require re-designing and costly changes in the platform. Computer systems hosting
safety-critical applications requires safety certification and any changes in the system
configurations requires re-certification [KZ09]. However, in this paper we focus on
a form of extensibility that is accommodating future applications, thus, an extensi-
ble mixed-criticality that also hosts safety-critical applications, does not require re-
certification.

Pop et al. [PEPP04] propose an incremental scheduling algorithm for embedded sys-
tems which aims at facilitating hard real-time applications implemented as tasks and
adding specific future tasks. The approach generates extensible schedules that can ac-
commodate future tasks without disturbing the existing tasks. This is realized using the
slack in the schedule.

The approach in [ZYS+09] uses extensibility to target robust task scheduling in dis-
tributed systems. Any changes in the task requirements are considered an extension.
The proposed robust scheduler is able to support these changes using the dimension-
ized slacks in the schedule. Zheng et al. [WCP+05] propose a mathematical modeling
approach for extensibility. In this work extensibility is in the form of accommodat-
ing future tasks. This approach determines a distribution of the slack among all tasks
and targets all variations of future task sets. A benefit of this approach is that no prior
specification of future tasks are required.

We porposed in [BKA+20] an extensible scheduling algorithm for critical applications
in an FCP. The proposed algorithm employs a heuristic approach that provides well-
distributed slacks in the schedules of high-critical applications, which can be used for
scheduling future critical applications. Yin et al. [YLL18] propose a task scheduling
algorithm that targets extensibility by using resources in the Cloud. In this approach,
tasks are scheduled either on FNs or in the Cloud using containers.

The work in the literature also addresses extensibility in the systems hosting mixed-
criticality network messages. [WHL+19] focuses on scheduling network messages in
TSN networks in automotive where dynamic messages with less-criticality are needed
to be scheduled with ones of high criticality (e.g., control engine); and optimizing the
schedules to host more dynamic messages. Guo et al. [GGZ+12] propose a method
for mapping task to the control units of an automotive use case targeting extensibility.
These tasks exchange messages in the automotive network.

The authors in [MWTP+13] propose an approach which decides the mapping of ap-

4.7 Conclusions 123

plications to the processing elements, separates the mixed-criticality applications using
partitioning, and schedules tasks and messages of the applications. This method aims
for the extensible configuration which allows adding future applications. Similarly, the
approach presented in [ZZZ+13], uses the worst-case response time analysis to decide
on the task allocation, the signal to message mapping, and the assignment of priori-
ties to tasks and messages. The approach optimizes the decisions for accommodating
future applications.

4.7 Conclusions

Fog Computing is an enabler for Industry 4.0 where mixed-criticality applications are
running on a shared computing platform. The Fog Computing Platform (FCP) has
to separate such applications to protect high-criticality applications. The vision is to
virtualize control applications and run them as software tasks and transmit them as net-
work messages, while their safety, dependability, and performance are guaranteed. We
proposed a design-time static configuration of the FCP. We considered on one hand,
critical control applications that are isolated and handled with a static design-time FCP
configuration, and on the other hand, Fog applications that are handled at runtime us-
ing pre-allocated resources. These pre-allocated resources are determined in the FCP
configuration at design-time such that the FCP is able to accommodate upgrades in the
form of future critical control applications, and dynamic changes in the form of Fog
applications, minimizing their response times. The We implemented an optimization
approach using Constraint Programming, a declarative programming paradigm where
realistic constraints can be added. We have evaluated our approach on several test cases
and demonstrated its ability to synthesize extensible configurations.

124
Paper C: Extensibility-Aware Fog Computing Platform Configuration for

Mixed-Criticality Applications

CHAPTER 5

Paper D: Electric Drives as
Fog Nodes in a Fog

Computing-based Industrial
Use Case

Electric drives, which are a main component in industrial applications, control electric
motors and record vital information about their respective industrial processes. The
development of electric drives as Fog nodes within a fog computing platform (FCP)
leads to new abilities such as programmability, analytics, and connectivity, increasing
their value. In this study, we use the FORA FCP reference architecture to implement
electric drives as Fog nodes, which we call “fogification”. We designed our fogified
drive architecture and its components using Architecture Analysis and Design Lan-
guage (AADL). The design process was driven by the high-level requirements that we
elicited. We used the fogified drive architecture to implement a self baggage drop sys-
tem in which electric drives are the key components. We then evaluated the fog-based
design using several key performance indicators, which reveal its advantages over the
current drive architecture.

126
Paper D: Electric Drives as Fog Nodes in a Fog Computing-based

Industrial Use Case

5.1 Introduction

Industry 4.0 is an industrial revolution via digitalization that affects all industries and
sectors. Digitization increases productivity, flexibility, and product quality. Moreover,
it reduces time-to-market and supports mass-customization [BBM+16]. When ma-
chines become connected with each other, sensors, and actuators, they form the Indus-
trial Internet of Things (IIoT), which is expected to increase the global gross domestic
product (GDP) value to USD 15 trillion by 2030 [DBNA15].

The convergence of Operational Technology (OT) and Information Technology (IT)
drives this digital transformation [HGB14]. However, OT and IT use different com-
putation and communication technologies [HGB14]. OT employs dedicated hardware
and software to implement real-time and safety-critical applications that have strin-
gent timing and dependability requirements. OT uses proprietary technologies, im-
poses information flow restrictions, and hence does not support the vision of Industry
4.0 [HGB14]. IT uses cloud computing, artificial intelligence (AI), and big data to
bring flexibility, scalablity, reduced costs and faster development. However, IT is not
suitable for industrial applications where non-functional properties related to timeliness
and dependability must be guaranteed [GVCL14].

Because Industry 4.0 will only become a reality through the convergence of OT and
IT [HGB14], a new paradigm called fog computing has been envisioned as an architec-
tural means to realizing the OT/IT convergence [SP16]. Fog computing is a “system-
level architecture that distributes resources and services of computing, storage, control
and networking anywhere along the continuum from Cloud to Things” [Ope21a]. A
Fog Computing Platform (FCP) brings computation and storage resources closer to the
edge of the network. An FCP is composed of several interconnected Fog Nodes (FNs),
as shown in Fig. 5.1. Several types of FNs from powerful high-end FNs to low-end
FNs with limited resources have been proposed by researchers [BMNZ14, PML+19]
and have been developed by companies [TTT21, Neb21].

This study addresses industrial application areas in which electric drives [BN16] are
present. Electric drives control electric motors and are ubiquitous in industrial installa-
tions in many domains such as the automotive, food and beverage, marine and offshore,
hydraulics, refrigeration, and air conditioning domians. In this paper, we propose an
extension to electric drives to enable their use as FNs within a fog computing architec-
ture (we call this process fogification). Extending electric drives (which are naturally
at the edge of the network, near the machines, sensors, actuators, and industrial data
sources) with fog computing capabilities will guarantee effective collaboration among
the devices, nodes, and Cloud [KSLP19].

By developing the electric drives as FNs, new features, such as programmability, ana-
lytics, and connectivity with customer clouds, are expected to increase their value [FOR21].

5.1 Introduction 127

Figure 5.1: FCP: FNs (boxes) are placed at the edge of the network and connected
via network (thick lines) with each other, equipment, and the Cloud. The
applications run on FNs and in the Cloud.

Their increased functionality allows drives to assume a more significant role in indus-
trial and domestic control systems by leveraging their ability to instrument as the data
source, which can help bootstrap the data economy. The main direct business bene-
fit comes from the ability to also instrument legacy systems using drives as the data
source. Because electric drives run real-time software to control the speed, torque, and
position of electrical motors that operate cooperatively with other devices to automate
machinery, they produce data that carries vital information about the machinery they
control. These data compromise a critical asset that is massive, often repetitive, and
often must remain on-premises for privacy reasons. Hence, there is a need for drives to
be capable of data analytics locally, at the edge.

Edge analytics will facilitate network off-loading and extend the Internet of Things
(IoT) solution market. Digital services allow efficient service provisioning, improved
uptime, and decreased overall costs. Correctly configured products and processes de-
crease energy consumption and improve quality. Open data ecosystems support innova-
tions and new value-added services and will create long-term benefits for all ecosystem
participants.

An initial limited investigation on extending electric drives with fog computing capa-
bilities was carried out in [BDQ+20]. In that study, we used the recently proposed
FORA FCP reference architecture [PZB+21] to design the electric drives as FNs us-
ing the Architecture Analysis & Design Language (AADL), which is an architecture
description language from the domain of real-time embedded systems [FLV03].

128
Paper D: Electric Drives as Fog Nodes in a Fog Computing-based

Industrial Use Case

AADL has been standardized by the Society of Automotive Engineers (SAE) and em-
ploys a component-oriented approach for modeling systems using both textual syntax
and graphical notation with precise semantics [FLV03].

Furthermore, the AADL core language can be extended using user-defined properties
and language annexes. This study builds on and extends existing annexes, such as
the ARINC653 AADL annex [WMZ+11], which defines virtual processors and vir-
tual buses. AADL is supported by several tools for graphical modeling and analysis
of embedded systems such as OSATE [T+06], which is an open-source Eclipse-based
framework consisting of a modeling environment and a set of plug-ins for validating
and analyzing models. We also used OSATE for modeling, model checking, integra-
tion, and analysis.

The contributions of this paper are as follows: We propose a new design for electric
drives as FNs using the FORA FCP reference architecture from [PZB+21] and model
the fogified drive architecture using AADL. Additionally, we implement a realistic in-
dustrial application that uses electric motors to drive conveyor belts using the proposed
fogified drive architecture. We identify the fog-based drive requirements for driving
the design process. Finally, we use the fog-based drives to develop a solution for our
use case, and propose several Key Performance Indicators (KPIs), which are used to
evaluate the fog-based solution. The evaluation states that the fog-based electric drives
provide the FN functionalities as envisioned in [PZB+21], as well as the typical drive
functionality.

The remainder of this paper is structured as follows. We introduce electric motors,
drives, the current architecture of drives, and the drive requirements in Section 5.2.
We proposed our fogified drive architecture and its AADL model in Section 5.3. Sec-
tion 5.4 evaluates the fog-based solution for our use case. We highlight the related
work in Section 5.5 and conclude the paper in Section 5.6.

5.2 Electric Motors and Drives

We introduce electric motors and electric drives in Section 5.2.1 and Section 5.2.2,
respectively, and describe an industrial setting in which motors and drives are used
in Section 5.2.3. We present the current drive architecture and its AADL model in
Section 5.2.4. Section 5.2.5 presents the drive requirements and KPIs.

5.2 Electric Motors and Drives 129

Figure 5.2: Automation pyramid.

5.2.1 Electric Motors

Electric motors are one of the main components in industrial settings in which machines
are used for automation. As mentioned, they are used in many application areas, from
building automation, energy systems, and industrial automation, mobile hydraulics.

An electric motor is an electromechanical machine that converts electricity into me-
chanical energy. The electric current is fed to the motor using a wire winding. This
winding interacts with the motor’s magnetic field, which applies torque to the motor
shaft. Several classifications of electric motors have been introduced. For example, a
well-known classification is based on the type of power source, Direct Current (DC)
or Alternating Current (AC). Other classifications consider the internals of the electric
motors or output motion [HD19].

Electric motors are capable of generating continuous rotation and are widely used in
various areas, ranging from electric watches to ship propulsion. In an industrial setting
in which electric motors are operating, a specific rotation scenario is assumed. For
example, an electric motor is needed to generate a fixed speed rotation, e.g., 50 revo-
lutions per minute (rpm) for 10 s, starting at a given time. The rotation may also have
a specific speed, torque, and position, which can be controlled by altering the electric
current, e.g., the voltage, amperage, and frequency (in AC).

5.2.2 Electric Drives

Electric drives, alternatively called drives, are used to alter the electric current’s charac-
teristics such as the frequency and voltage to control the motor’s rotation for a required
outcome, i.e., the desired speed, torque, and position [BN16]. Drives are designed to
be general purposes, e.g., to control motors within a certain power range, or for specific

130
Paper D: Electric Drives as Fog Nodes in a Fog Computing-based

Industrial Use Case

Figure 5.3: Basic block diagram of an electric drive.

purposes, e.g., to control an electric motor with specific requirements. An example of a
specific purpose is the control of a centrifuge machine’s motor for spinning very dense
fluid, which needs very precise control. Because using drives along with electric mo-
tors is necessary in industrial settings and products, the market for drives is huge, and
it is predicted that it will grow by USD 5.11 billion between 2019 and 2023 [Tec21].
Electric drives are a natural entry point for novel technologies that will bring significant
business benefits, considering their role in the industry and their market value.

Figure 5.2 shows the so-called “automation pyramid” [Wil94], which captures the mul-
tiple levels of an industrial automation enterprise. The “machine level” consists of sen-
sors and actuators, including electric motors, which are placed in the field or on the
production floor. In contrast, the “control level” consists of industrial controllers such
as Industrial Personal Computer (IPC) and Programmable Logic Controllers (PLCs),
which control and manipulate the devices in the field. The controllers obtain their
inputs from the machine level, e.g., sensors, switches, and Human–Machine Inter-
faces (HMIs), run a control algorithm to determine the desired outputs, and return the
outputs to the actuator devices in the field. Although drives implement controllers to
control the rotation of electric motors, they physically reside on the machine level and
are classified as secondary control devices.

Drives are embedded cyber-physical systems that must meet real-time responses and
reliability guarantees in order to meet the high dependability requirements of the appli-
cation areas in which they are used. They run real-time applications and have access to
detailed information about the electric motors they control and the industrial processes
that are implemented.

The basic block diagram of a drive is given in Fig. 5.3, where the source power and
command are the inputs and the sink power is the output. The drive has two internal
units: (i) a power modulator unit and (ii) a control unit. The power modulator unit

5.2 Electric Motors and Drives 131

Figure 5.4: Conveyor belt.

modulates the source power of the modulating signal and returns the sink power. The
modulating signal is generated by the control unit, which performs a resource-intensive
computation based on the input command and sensed value of the sink power. The
control unit may have safety features embedded such as a motor brake.

5.2.3 Example Industrial Setting

We provide an example industrial setting in Fig. 5.4, where an electric motor is used to
control the conveyor belt speed. The conveyor belt machine is a carrying medium that
uses belts rotating about two or more pulleys (the red box in the figure). The conveyor
belt needs to move the load it carries with a specific speed profile determined by an
industrial controller residing at the control level (Fig. 5.2), a PLC or an IPC.

Figure 5.5 shows a typical implementation consisting of a PLC, a sensor, a drive, and
an electric motor. The sensor reads the load position and sends the data to the PLC,
which determines the electric motor’s current speed. The PLC sends the desired speed
value to the drive. The drive controls the speed of the electric motor so that it is the
desired value at the right time.

5.2.4 Baseline Drive Architecture

We first discuss a typical generic non-fog drive implementation [BD12, GRHMM+15,
GBFD, BM07], which we refer to as the “baseline architecture”. We illustrate its design
using AADL, as shown in Fig. 5.6a.

132
Paper D: Electric Drives as Fog Nodes in a Fog Computing-based

Industrial Use Case

The drive takes as inputs (i) the source power, which is the main AC power line, and (ii)
the command via a fieldbus interface that connects to a PLC, and outputs a sink power
that operates an electric motor. The HMI is used as both the input and an output. As
shown in Fig. 5.6a, the architecture consists of four components: operation component,
communication component, control component, and power component. Each compo-
nent uses dedicated hardware and software and has access to a shared bus, enabling it to
be physically separated. Input-wise, all components are powered by the source power,
but only the communication component has access to the input command. Output-wise,
the power component returns the sink power, and the operation component has access
to the HMI.

The operation component determines the operation mode of the drive. Figure 5.6b
depicts the hardware, which has a CPU, RAM, and storage, and the software, which
consists of real-time applications (Apps) that are running on a real-time operating sys-
tem (OS). The operation component connects to the other components via the shared
bus (Fig. 5.6a).

The applications running in the operation components (also shown in Fig. 5.6b) are
as follows: (1) the mode control application (ModeControlApp), which engages and
disengages the motor controller; (2) the management application (ManagmentApp),
which configures the communication and controller parameters; and (3) the monitoring
application (MonitoringApp), which implements safety functions. The ModeContro-
lApp starts and stops the operation of the electric motor by engaging or disengaging
the motor controller component based on the HMI or command inputs via the fieldBus
interface. The ManagementApp sets the drive parameters such as the communication
parameters via the HMI and motor control configurations such as the desired output
(which is received from the communication component) via the shared bus. The Mon-
itoringApp monitors the drive operation and engages safety functions when necessary.

The communication component, as shown in Fig. 5.6c, consists of the common hard-

Figure 5.5: Typical implementation of a conveyor belt system.

5.2 Electric Motors and Drives 133

(a) Overview of the baseline architecture. (b) Operation component.

(c) Communication component. (d) Motor control component.

Figure 5.6: AADL diagrams of the baseline architecture.

ware equipped with communication resources (the Switch box) to connect via the field-
Bus interface with the ProfiNet/RT [Sie08] standard. The component’s software con-
sists of a real-time application (CommunicationApp) that handles the network protocol
and is running on a real-time OS. The drive communicates with a PLC as the prelimi-
nary controller via a feildBus interface to obtain the desired motor output.

The control component is shown in Fig. 5.6d and consists of the hardware introduced
earlier and software that implements a feedback control application (ControlApp) run-
ning on a real-time OS. The feedback control application is implemented according to
the IEC 61131-3 standard [IEC03] function blocks. Once the application is engaged
by the input from the operation component via the shared bus, it outputs a signal to
the power component via the I/O interface. The signal is generated based on the con-
figuration received via the shared bus from the operation component and the feedback
received from the power component via the I/O interface.

134
Paper D: Electric Drives as Fog Nodes in a Fog Computing-based

Industrial Use Case

Table 5.1: System-level requirements for Fog-based drives

Requirement Rationale Realization in the
fog-based architecture
(Section 5.3.2)

1 Drives shall be designed according
to industrial standards.

To ensure drive compatibility with the in-
dustrial environment

IEC61800-based

2 Drives shall host mixed-criticality
applications.

To virtualize critical and control applica-
tions and run IIoT applications envisioned
in Industry 4.0

Virtualization and sepa-
ration mechanisms

3 Drives shall perform accurate motor
control.

To enable the virtualization of control
applications to meet their non-functional
properties (control performance)

Configuration to provide
good control perfor-
mance (20 ms response
time)

4 Drives shall be configurable. To enable the allocation of the necessary
resources to mixed-criticality applications
and to ensure portability and deployment
of applications

Implemented via middle-
ware

5 Drives shall have fault tolerant com-
munication.

To ensure the connectivity and responsive-
ness of the drive

Via IEEE 802.1 TSN
configuration [IEE21b]

6 Drives shall have a time-
constrained communication in-
terface.

To guarantee communication with bounded
latency for critical applications exchanging
messages

IEEE 802.1 TSN solu-
tion

7 Drives shall have Cloud access. To enable deployment and communication
for IIoT applications

Via Ethernet

8 Drives shall perform data analytics. To avoid sending all data to the Cloud and
to optimize resource management

Machine learning solu-
tions

9 Drives shall enforce security poli-
cies.

To avoid malicious activity and define per-
missible user actions

Policies enforced via
middleware

10 Drives shall be fault-tolerant. To ensure fault-tolerant and high-integrity
operation of safety-related applications

Fault detection, isola-
tion, and recovery mech-
anisms

The power component, as depicted in Fig. 5.6a, takes the source power and the signal
from the I/O interface as inputs and outputs the sink power, which operates the electric
motor. This component is a power modulator that modulates the power line to the de-
sired input reference. It also returns the current sink power setting via an I/O interface.
The control component uses a feedback signal to control the sink power that operates
the drive.

5.2.5 Requirements and KPIs

We elicited system-level requirements for designing a fogified drive architecture con-
sidering the vision of Industry 4.0. Table 5.1 lists the requirements and relevant ratio-
nale. The requirements specify that the fog-based drives should both have fog com-
puting capabilities (for example, the ability to perform data analytics) and still deliver
safety-related drive functions (for example, accurate motor control).

We have also defined several Key Performance Indicators (KPIs) that, should be used

5.3 Fog-based Electric Drives 135

Table 5.2: KPIs

Criteria Motivation
1 Safety Safety-critical industrial applications should be able to be hosted with no

interference from less- criticality applications.
2 Security Platform-level security services will be provided and the threat of suc-

cessful attacks would be reduced.
3 Virtualized

critical
control
performance

Using the configuration mechanisms, the FN should be able to configure
its resources and the TSN switches according to the operational needs of
the virtual control tasks such that the control performance can be guar-
anteed.

4 Hardware
costs

Hardware spending should be reduced because the platform enables vir-
tualization that converges various functions into one FN.

5 Data analyt-
ics

The FNs will implement the OPC unified architecture [MLD09] and con-
nect directly to the equipment, sensors, and actuators. The data can then
be analyzed locally using analytics applications at the edge. A subset
of production data is then transferred securely to the Cloud for big data
analytics.

to evaluate the solutions implemented using the fog-based drive architecture. Table 5.2
shows the KPIs and the relevant motivation.

5.3 Fog-based Electric Drives

In this section, we briefly present the FORA Fog Computing Platform (FCP) in Sec-
tion 5.3.1, which was used to design our fogified drive architecture. We describe the
proposed drive architecture and its AADL model in Section 5.3.2.

5.3.1 FORA FCP Reference Architecture

The FORA FCP reference architecture was introduced in [PZB+21] to bring the fog
computing paradigm to IIoT applications. The FCP consists of FNs connected to each
other and to the machines through a deterministic communication solution, namely,
IEEE 802.1 Time-Sensitive Networking (TSN) [IEE21b] (Fig. 5.1). The aim of TSN
is to provide timing guarantees for demanding applications such as critical applications.
It also guarantees bounded communication latency between nodes in the FCP. The key
components of the FORA FCP are (1) deterministic virtualization, (2) middleware, and
(3) mechanisms for resource management and orchestration [PZB+21].

136
Paper D: Electric Drives as Fog Nodes in a Fog Computing-based

Industrial Use Case

Because the FCP hosts mixed-criticality applications with differing requirements, an
isolation mechanism is required to prevent low-criticality applications from interfering
with high-criticality applications. In the FORA FCP, each FN utilizes a hypervisor that
provides spatial and temporal isolation among the mixed-critically applications.

The FORA FCP uses middleware to support the implementation of distributed critical
applications and non-critical applications such as IIoT applications that implement data
analytics, updates, and regular checks. It also offers services for dependability, such as
resource monitoring, safety and security monitoring, and machine learning services.

The FORA FCP employs resource management techniques for supply and demand
alignment in an FCP and support configuration for optimizing resource utilization.
With the resource management mechanisms, the available resources of each FN and
the fog landscape are monitored at runtime, and services for the placement, deploy-
ment, and support of future applications and dynamic applications that may migrate
across the FNs of the FCP are provided.

These services enable real-time decision making, security services, and resource prior-
itization. More information on the FORA FCP middleware is presented in [PZB+21].

Resource management techniques align resource supply and demand in an FCP and
support FCP configuration for optimizing resource utilization. With the resource man-
agement mechanisms, the available resource of each FN and the fog landscape is mon-
itored at runtime, which allows the placement, deployment, and support of IIoT ap-
plications. More information on the resource management mechanisms for the FORA
FCP is presented in [PZB+21].

5.3.2 Fogified Drive Architecture

This section describes our proposed fogified drive architecture, which is based on the
FORA FCP [PZB+21]. We assume that using our proposed fogified architecture, drives
are developed as FNs that are connected to each other and to the machines through
TSN [IEE21b]. The fogified drives implement both the typical drive functionality (from
the baseline architecture) and extra functionalities, as envisioned in the FORA FCP in
an FN. We provide an overview of such a drive developed as an FN and modeled using
AADL in Fig. 5.7a. The architecture consists of a hardware component, a software
component, and a power modulator unit for operating electric motors. The fogified
drive takes as inputs (1) the source power and (2) the network connection via the TSN
interface. It outputs the sink power, and uses the network connection to send data.

The hardware component is depicted in Fig. 5.7b, which is equipped with a commer-
cial of-the-shelf (COTS) multicore processor (CPU), RAM module, storage resources,

5.3 Fog-based Electric Drives 137

(a) Overview of a fogified drive. (b) Hardware platform. (c) Software platform.

(d) A partition. (e) Hypervisor.

Figure 5.7: AADL diagram of the fogified architecture.

an analog to digital converter module (A2D), and a network switch (TSNCard) for TSN
capabilities. These resources are shared for running applications that sit on the software
component. Similar to [PZB+21], we consider a fog-based design that uses TSN be-
cause it supports mixed-criticality bounded-latency communication via multiple traffic
types. For the scheduled traffic, which requires synchronized schedule tables, TSN em-
ploys a network-wide clock synchronization protocol, namely, IEEE 802.1AS [IEE21a]
with sub-microsecond precision. The FN utilizes its advanced networking capabilities
to interact with the environment, including sensors, actuators, other FNs, and remote
Cloud facilities.

An example of a COTS multicore processor is the Intel Atom processor, which im-
plements hardware virtualization extensions, such as Intel’s VT-x and VT-d, second
level address translation (SLAT), and single-root I/O virtualization (SR-IOV) [RS19].

138
Paper D: Electric Drives as Fog Nodes in a Fog Computing-based

Industrial Use Case

Hardware virtualization extensions allow the hypervisor to host virtual machines with
dedicated operating systems.

The software component has a software stack that consists of a hypervisor, middle-
ware, partitions with dedicated operating systems, and an application layer, as shown in
Fig. 5.7c. As mentioned in [PZB+21], the software stack can take advantage of existing
open-source software stacks for the edge, e.g., OpenStack [Fou21]. The middleware
can use application layer protocols such as MQTT-SN [SCT13] or CoAP [SHB14]
for higher-level component communication and TSN and OPC UA for lower-level
component communication. Mixed-criticality applications that share the same hard-
ware resources are separated into different virtual machines (partitions) enforced us-
ing hardware-supported virtualization [SVLN13] based on hypervisors such as PikeOS
[KW07], ACRN [ACR20], or Xen [The21].

A hypervisor partitions its resources, such as processor cores and time, main memory,
and I/O devices, to achieve strict temporal and spatial isolation of applications with
mixed criticalities. The internals of our proposed hypervisor component are depicted
in Fig. 5.7e, where we assume PikeOS [KW07] is used as the hypervisor. PikeOS can
also make use of static partition schedules decided at design time to enforce temporal
isolation. A static partition schedule consists of several partition slices where the par-
tition is running based on a partition table that captures the start and end of partition
slices (see [BCP20] for more information on partitions and partition slices).

The fogified drives can run all the drive applications from the baseline architecture,
all of which are critical and modeled as periodic hard real-time tasks and messages
[But11]. They can also run IoT applications that are non-critical, may migrate in
and out of the drives, and implement tasks such as data analytics. Each IoT appli-
cation was also implemented as tasks and messages. Our model assumes three types of
applications— control, communication, and operation—which are assigned to separate
partitions. The model for each partition is illustrated in Fig. 5.7d, where an OS runs
the applications on the application layer. The OS runs the applications, and uses the
AppServices and AppSupport for using shared resources and assuring dependability.
The control partition has a soft-PLC OS, and the control application was implemented
using the IEC 61131-3 standard [IEC03] function blocks. We also define a Qual-
ity of Control (QoC) for control applications that captures the control performance;
see [CPBM19] for more information about the QoC. The communication partition has
a real-time OS that runs applications for controlling network traffic, applying security
mechanisms, handling application traffic, and deciding the TSN message schedule ta-
bles, called Gate Control Lists (GCLs). We assume that the operation partition has an
OS to run different types of applications, including a machine learning application.

The power modulator unit, as depicted in Fig. 5.7a operates the same way as the
power component in the baseline architecture. It takes the source power and the signal
from the I/O interface as inputs and outputs the sink power, which operates the electric

5.4 Evaluation 139

Figure 5.8: Self baggage drop system in Brisbane airport.

motor. The I/O interface is connected to the hardware platform where an analog to
digital converter is accessible to control the partition that uses the I/O signal to operate
the electric motors.

5.4 Evaluation

In this section, we first provide the details of the Use Case (UC), which we used for
evaluation in Section 5.4.1. We evaluate the UC in Section 5.4.2 on several aspects
using the KPIs in Table 5.2, discussing the suitability of the fog-based drive design for
industrial applications.

5.4.1 UC Description

We used the proposed fogified drive to model a self baggage drop system. A self
baggage drop system is a well-known and widely used machine in airports to automati-
cally collect and distribute passenger baggage (Fig. 5.8). The machine is realized with
several conveyor belts (see [BDQ+20] for details of a conveyor belt), and it collects
baggage from passengers and delivers the baggage to special vehicles (that carry the
baggage to an airplane according to the destination). In this UC, we consider a typical
machine, as depicted in Fig. 5.8, which is fed with baggage from every input location,
weighs the baggage, reads the tag of the received baggage, and determines the destina-
tion of the baggage according to the tag by accessing a database. It then conveys the
baggage toward the destination from one of the output locations, and then reports the
machine usage and baggage delivery to the costumer’s cloud.

140
Paper D: Electric Drives as Fog Nodes in a Fog Computing-based

Industrial Use Case

Figure 5.9: UC Schematics: The green belts are inputs, and the red belts represent the
output. The round yellow belt is the main distribution belt. There are eight
electric motors (M), 12 part present sensors (p), and four tag reader sensors
(tr). The small black boxes represent the baggage. Network switches are
indicated by SW in both the FCP and baseline architectures, whereas N
denotes a fogified drive in the FCP architecture and C denotes a PLC in
the baseline architecture. The baseline architecture has an IPC.

Figure 5.9 shows a schematic of the machine. As depicted in the figure, the machine
has four input conveyor belts (green), one main distribution conveyor belt (yellow), two
actuators (blue) that push baggage, and two output conveyor belts (red). Each input
conveyor belt has an electric motor that drives a belt, two part-present sensors that
sense the presence of a load, a tag reader for reading baggage tags, and a weight sensor
for weighing the load. The main distribution conveyor belt has two electric motors for
driving the belt and two actuators for pushing the loads. Each output conveyor belt also
has an electric motor and two part-present sensors.

We consider two different implementations for the UC: (1) a baseline architecture and
(2) our proposed fogified architecture. We also modeled the fogified implementation
of the UC with AADL and show its diagram in Fig. 5.10. Table 5.3 summarizes the
hardware equipment costs and number of units used in the two implementations of the
UC.

5.4 Evaluation 141

Figure 5.10: UC AADL model.

Drives in the fogified architecture cover the functionality of the baseline drives and
can run all drive applications from the baseline architecture. We show example UC
applications running on FN N1 in Table 5.5, which shows the applications and relevant
mapping of these applications to the processing elements of the baseline architecture.

5.4.2 Assessing the KPIs

In this section, we address each KPI separately and consider it as an evaluation crite-
rion, using the evaluation method mentioned in Table. 5.4 to evaluate it on the UC. The
results of the evaluation are as follows.

Safety: As mentioned, the FNs in the UC host mixed-criticality applications. High-
criticality applications should be protected from low-criticality applications. This is
achieved by spatial and temporal separation mechanisms implemented via the hyper-
visor. Consider the UC applications mapped to FN N1 in Table 5.5, where column 1
shows the criticality of the application, ranging from 3 for the highest criticality to 0
for the lowest criticality.

The baseline architecture employs spatial separation that uses dedicated processing
elements, i.e., drives, PLCs, and IPCs, to isolate applications of different criticalities.
For example, high-criticality applications are assigned to run on PLCs, which guarantee
deterministic execution, and the less-critical applications are assigned to be run on
IPCs. Column 7 in Table 5.5 shows the mapping of the applications to processing
elements.

142
Paper D: Electric Drives as Fog Nodes in a Fog Computing-based

Industrial Use Case

Table 5.3: Summary of the UC hardware equipment

Equipment Unit No. of units No. of units
Name Price in the fogified in the baseline

(USD) Architecture Architecture
Part present sensor 100 12 12

Electric motor 200 8 8
Tag reader 50 4 4

Weight sensor 50 4 4
Push actuator 100 2 2

Belt 50 7 7
PLC 500 0 6
IPC 1,000 0 1

Switch 100 3 2
Fogified drive 1,000 2 0
Electric drive 350 0 8

The same level of separation should be achieved in the fog-based solution. Hence, the
fogified architecture uses a hypervisor and dependable middleware to achieve spatial
partitioning. The hypervisor provides deterministic access to shared resources (spa-
tial partitioning) and the temporal isolation of mixed-criticality applications via a static
configuration table. The configuration of spatial and temporal isolation can be achieved
using approaches such as the one proposed in [BCP20], which is used in the node con-
figuration component (Fig. 5.7e). The configuration generates an optimized partition
table for each FN, the mapping of applications to partitions based on their criticality
levels, and the schedule tables for the critical tasks.

Table 5.4: Evaluation methods of KPIs

Criterion Evaluation
#1 Provision of isolation via partitioning and evaluation of the applied

overhead
#2 Protection of high-criticality applications and provision of authenti-

cation mechanisms for communication
#3 Optimization of the control performance for control applications
#4 Comparision of the hardware cost of a UC implementation using the

baseline architecture and the fogified architecture
#5 Provision of a decentralized machine learning solution

5.4 Evaluation 143

Table 5.5: UC’s applications running on the FN N1

Criticality Apps. No. of No. of Bandwidth Routing Mapping App. core Total utilization Total utilization
tasks streams utilization (baseline) utilization w/o partitioning incl. partitioning

3 MC1(γ1) 2 1 0.2% p1→ SW1→ N1 D1 15% 126% 139%
MC1(γ2) 2 1 0.2% p3→ SW1→ N1 D2 15%
MC1(γ3) 2 1 0.2% p5→ SW1→ N1 D3 15%
MC1(γ4) 2 1 0.2% p7→ SW1→ N1 D4 15%
MM2(γ9) 4 2 0.3% N1→ SW1→ SW2→ N2 C1 12%

N2→ SW2→ SW1→ N1
MM2(γ10) 4 2 0.3% p9→ SW2→ SW1→ N1 C2 12%

p11→ SW2→ SW1→ N1
MM2(γ11) 4 2 0.3% N1→ SW1→ SW2→ SW3→ A1 C3 12%

N1→ SW1→ SW2→ SW3→ A2
SS3(γ15) 2 0 0% – N/A 10%
SS3(γ16) 2 0 0% – N/A 10%
SS3(γ17) 2 0 0% – N/A 10%

2 SR4(γ21) 1 1 0.1% p2→ SW1→ N1 C1 1.5% 18% 20%
SR4(γ22) 1 1 0.1% tr1→ SW2→ SW1→ N1 C1 1.5%
SR4(γ23) 1 1 0.1% p4→ SW1→ N1 C2 1.5%
SR4(γ24) 1 1 0.1% tr2→ SW3→ SW2→ SW1→ N1 C2 1.5%
SR4(γ25) 1 1 0.1% p6→ SW1→ N1 C3 1.5%
SR4(γ26) 1 1 0.1% tr3→ SW3→ SW2→ SW1→ N1 C3 1.5%
DA5(γ33) 4 3 0.5% N1→ SW1→ SW2→ SW3→ Cloud IPC1 9%

Cloud→ SW3→ SW2→ SW1→ N1
N1→ SW1→ SW2→ SW3→ Cloud

0 ML6(γ34) 6 2 0.4% tr1→ SW2→ SW1→ N1 N/A 8% 16% 17%
N1→ SW1→ SW2→ SW3→ Cloud

ML6(γ35) 6 2 0.4% tr2→ SW3→ SW2→ SW1→ N1 N/A 8%
N1→ SW1→ SW2→ SW3→ Cloud

Sum 160% 175%
1 Motor Control
2 Machine Management
3 Safety Service
4 Sensor Reading
5 Database Access
6 Machine Learning

The advantage of virtualization and partitioning is that it reduces hardware costs, i.e.,
more equipment and mixed-criticality functionality can be hosted as software tasks
on the FNs. However, we were interested in determining whether we could achieve
a level of performance equal to that of the baseline architecture, that is, whether the
virtualization would introduce much overhead. We evaluate this via a performance
index defined as the number of processing element types and the overhead introduced
by the separation mechanisms. As shown in Table 5.5, the applications are mapped
to the FN N1 in the fogified architecture, whereas on the baseline architecture, the
processing elements are drives, PLCs, IPCs, and the Cloud; this result demonstrates
that the performance on the fogified architecture is increased.

We evaluated the performance of our solution employed on the fogified architecture. As
shown in Table 5.5, the example applications running on FN N1 are separated using the
proposed solution via partitioning. Our solution successfully determined the partitions
and partition slices where the applications implemented as tasks are running. Moreover,
it generated partition schedules that capture the start and end of partition slices.

The applications in Table 5.5 are implemented as tasks, and column 8 shows the utiliza-
tion of each task when implemented on its respective core, i.e., the fraction of the 100%
core utilization. Column 9 in the table shows the total utilization for each application

144
Paper D: Electric Drives as Fog Nodes in a Fog Computing-based

Industrial Use Case

without considering the overhead introduced by the partitioning-based virtualization;
note that because the processors are dual-core, the total capacity of the two cores is
200%. Column 10 shows the total utilization when virtualization is used, accounting
for the overheads. Three partitions were generated, and the core utilization of each par-
tition increased by an average of 9% compared with the total utilization of applications
without partitioning. In other words, the results show that to enable the safety-related
separation of mixed-criticality applications, our proposed solution introduces only a
9% overhead on the total FN utilization.

Security: Security mechanisms are required to adequately protect the system against
adversaries. A compromised system may allow the safety requirements to be violated.
We briefly discuss security solutions that can be used in the UC’s fogified architec-
ture. These should all be deployed in parallel, as an instance of a defense-in-depth ap-
proach [Smi03]. The various mechanisms proposed here are summarized in Table 5.6,
see [TDDFD20] for details of the mitigation.

As shown in the table, security attacks can be divided into two categories: execution-
based and communication-based. The execution-based attacks target the configuration
of the FN to interrupt the execution of the assigned applications. The FNs in the fogi-
fied architecture employ user access policies and apply configurations that are deter-
mined by the node configuration component. Partitioning introduces another protection
mechanism because safety-critical applications are isolated in separate partitions.

Communication-based attacks affect the operation of a system by tampering with the
network communication. Because the fog-based solution uses TSN, we focus here on
the security vulnerabilities of TSN networks. TSN relies on clock synchronization for
some of its mechanisms, e.g., the scheduled traffic type implemented with GCLs via
802.1Qbv. Hence, clock synchronization can be a security weakness for TSN [IW17,
PBO19, XX11].

We now consider execution-based attacks. We assume that an attacker has control of

Table 5.6: Threats and their mitigation

Threat Mitigation
Man-in-the-middle, imper-
sonation

Confidential, authenticated com. channels

Attack impact Service isolation (e.g., partitions)
Remote attacks Firewalls, endpoint whitelisting
DoS Redundant network topologies
TSN security Isolation of the TSN protocol, per-stream filtering
Physical attacks Hardware token for configuration changes
Detection Security monitoring services

5.4 Evaluation 145

FN N1 and tries to interrupt the execution of high-criticality applications. The malware,
which we denote as task γ36, runs on a partition with criticality level 0 (Table 5.5), and
targets the intruption of the partition with criticality level 3, which runs motor control
applications. The security configuration component implemented in the node config-
uration component (Fig. 5.7e) monitors the execution of tasks according to their pre-
computed schedule tables, identifies tasks with suspicious activity (e.g., unresponsive
tasks or unauthorized access to resources), and performs predefined actions on the task
(e.g., stopping the task and recovering the application).

Performance of virtualized control: In the baseline architecture, critical control ap-
plications are assigned to run on dedicated processing elements, i.e., PLCs, which are
configured to meet the non-functional performance requirements of the control appli-
cations, such as deadlines and QoC.

The fogified architecture uses deterministic hypervisors to virtualize applications on
FNs, similar to [RS19], where hypervisors provide deterministic access to shared re-
sources via a static configuration table and provide spatial and temporal isolation of
mixed-criticality applications via partitioning. Because critical control applications
are virtualized and implemented as tasks, the configuration of the fogified architec-
ture (e.g., task and communication scheduling) has an impact on the QoC of control
applications [BCP19, BZP20].

The control functions are monolithic in the baseline architecture and do not exchange
critical messages over the Profinet fieldbus. However, in the fog-based solution, critical
control tasks exchange messages with each other as industrial “things”, e.g., as sensors
and actuators. Furthermore, the fogified architecture shares the same communication
medium, i.e., TSN, for hard and soft real-time, non-critical, and best-effort communi-
cation. TSN has mechanisms to guarantee the timing requirements of critical streams,
e.g., via scheduling enforced by GCLs [BZP20], but these must be properly configured.

The node configuration component determines the configuration needed to guarantee
good control performance, measured via the QoC metric. The component uses a meta-
heuristic solution proposed in [BCP20] to optimize the hypervisor partition tables, map

Table 5.7: QoC of control applications running on FN N1

App. IO Jitter Max E2E delay (µs) QoC
γ1 0 31 0.089
γ2 0 29 0.081
γ3 0 33 0.101
γ4 0 32 0.096

146
Paper D: Electric Drives as Fog Nodes in a Fog Computing-based

Industrial Use Case

the tasks to the processing cores of the multi-core processors of the FNs, assign the
tasks to partitions, and schedule the tasks inside the partition tables, optimizing the
QoC of control applications. The node management component also employs the con-
straint programming-based schedule synthesis strategy, which aims to maximize the
QoC and satisfy the deadlines of real-time messages, as proposed in [BZP20] to sched-
ule the traffic.

We evaluated the control performance of the proposed UC solution. We assume that
the applications in Table 5.5 are running on FN N1, which has a dual-core processor
and exchanges network streams via TSN. Columns 3 to 6 in the table show the task
and stream details, which are the total number of tasks, total number of streams, total
bandwidth utilization of streams on the 1 Gbps link, and the the routing, respectively.
We assume that applications γ1 to γ4 are motor control applications that control the
speed of the electric motors. Each motor control application exchanges a message with
a part-present sensor, calculates the control function similar to the function presented
in [BCP19], and applies the respective output signal to electric motors.

Our proposed strategy for communication scheduling in TSN successfully scheduled
all streams, i.e., none of the deadlines were missed, and optimized the schedules for
the QoC. We also evaluated the performance of our proposed optimization strategy
for task scheduling, and the proposed system successfully scheduled all the tasks and
determined the task mapping to the cores.

The results show that all streams have zero jitter, which improves the QoC. We present
the results in Table 5.7, where the I/O jitter, maximum end-to-end delay of the streams,
and QoC values are reported using JitterTime [CPBM19], which simulates the behav-
ior of the control application with respect to execution timing. We achieved a good
control performance with an average QoC value of 0.092 using the objective defined
in [BCP20].

Hardware cost: From a monetary perspective, the fogified architecture provides in-
centives concerning reducing the hardware cost. The common equipment cost for both
the architectures Ccost of implementing the system shown in Fig. 5.9 is the sum of
the equipment costs that are common for both, i.e., the first six items of Table 5.3.
We compute the common equipment costs as Ccost = 3.750 (all values are in USD).
The architecture-specific costs can be divided into baseline cost Bcost and fogified cost
Fcost . Hence, the total costs of the baseline and fogified architectures are T B

cost and T F
cost ,

respectively. Therefore, T B
cost = Bcost +Ccost and T F

cost = Fcost +Ccost . We computed the
total costs for the baseline architecture and the fogified architecture as T B

cost = 10,750
and T F

cost = 6,050, respectively.

Furthermore, we consider scenarios in which the UC is updated with new features. For
example, the UC employs an application that stops the conveyor belts when they do not
carry a load to save energy. In the fogified architecture, this application is deployed on

5.4 Evaluation 147

Airline 1 Airline 2 Airline 3 Airline 4 Aggregated

78

80

82

84

78.23%

84.58%

82.83%
82.25%

85.12%

A
cc

ur
ac

y
(%

)

Figure 5.11: Distributed ML: four airlines jointly train a global model. The aggregated
model outperforms a single entity after one-shot communication.

FNs via the Cloud connection. However, in the baseline architecture, the application is
deployed on each processing element individually, increasing the management costs.

Data analytics: In a Cloud-based AI implementation, distributed participants upload
their data to the Cloud, where the collected historical data is processed in a centralized
fashion. The downsides of this approach are that (1) it is bandwidth- and time- con-
suming to upload this data and (2) it impairs privacy via potential data leakage. The
solution is to utilize the edge device resources to carry out data analytics at the edge.
A recent study [QH20] analyzed the minimal requirements of a reconstruction attack
and provided insight into choosing the model size and architecture during the design of
a Machine Learning (ML) algorithm. With the release of the General Data Protection
Regulation (GDPR) [Pro21], data privacy protection has become a legal requirement.

We assume a scenario in which four airlines have decided to predict passenger sat-
isfaction. As part of this survey, passenger baggage information must be processed.
Implementing anML approach on the UC implemented with the baseline architecture
is impossible because processing elements such as the PLCs and IPC do not provide
sufficient resources, services, and connectivity to deploy such an application. Thus,
a decentralized machine learning approach is implemented to run on the FNs of the
fogified architecture.

The airlines aim to collaboratively train a predictor for passenger satisfaction. First, the
airlines locally train their own models based on their own data. Second, they share the
updated model with the Cloud based on their own data. Finally, the Cloud aggregates

148
Paper D: Electric Drives as Fog Nodes in a Fog Computing-based

Industrial Use Case

and updates the global model and sends it back to the airlines. The entire procedure
can be repeated multiple times. The features we used in this experiment are passenger
features such as gender and age, and flight features such as flight class, departure time,
baggage weight, flight destination, number of bags, and baggage size. We cast all cate-
gorical features into numerical ones and normalized them to a range between zero and
one during the preprocessing step. Here, we employ logistic regression for the binary
predictor. Given X ∈ RN×d , N is the total number of data and d is the dimension. Lo-
gistic regression maps the linear product of features to the range between zero and one
using a sigmoid function, defined as S(z) = 1

1+e−z , where z is a linear combination of
features defined as zi = ∑

d
j w jxi j ∀i ∈ [1,N]. In Fig. 5.11, we illustrate the advantage

of the aggregation step using one-shot communication, where the aggregated accuracy
of models created by individual airlines.

The implementation significantly decreases the upload bandwidth. For example, it
may save (B− 1)× 8d bytes for logistic regression model, where B is the batch size
for one shot and, d is the data dimension. This will save n× (B− 1)× 8d for n-shot
communications, and the advantage is more obvious with high-dimensional data (d is
large). Moreover, the FN can reply to customer queries without a large delay, which is
the main drawback of Cloud-based AI. The data remaining in the generation location
significantly reduce the risk of privacy leakage.

5.5 Related work

Several research projects have addressed mixed-criticality applications that share multicore-
based distributed architectures. The aims of the EMC2 European Project1 are to pro-
vide efficient handling of mixed-criticality applications under real-time conditions,
scalability and maximum flexibility, and full-scale deployment and management of
integrated tool chains, throughout the entire life cycle. Research on FCP architec-
tures has made progress in recent years [PML+19, YHQL15]. For example, the Euro-
pean projects FORA [PZB+21] and mF2C2 focus on creating open-source, standards-
compliant fog platforms using COTS hardware to execute hard real-time industrial con-
trol applications such as the electric drives discussed in this paper. Companies such as
TTTech Computertechnik AG [TTT21] and Nebbiolo Technologies Inc. [Neb21] are
pioneers in the field of commercializing the fog computing paradigm with market-ready
products for industrial automation. Although design paradigms for the fog are still in
their early stages, there are certain generic guidelines that are followed to ensure the
isolation of tasks of varying criticality. In [PMN+16], the authors describe an execution
framework in which applications are isolated temporally on many-core processors.

1www.artemis-emc2.eu
2https://www.mf2c-project.eu

5.5 Related work 149

Safety certification as proof of guarantees for the proper execution of safety functions
is needed for the FCP. Classical safety controller designs such as the simplex archi-
tecture [BCA+09, Lui01] provide a switching mechanism between a high-performance
but non-safety certified controller and a simple certified controller for safety functions.
However, for complex systems such as the FCP, the simplex design is nonoptimal be-
cause of its switching latencies. Selicean et al. [TSP15b] proposed a method in which
different safety-integrity levels (SILs) are assigned to the applications. In this method,
applications with the same SIL are mapped to a single partition. Virtualization of con-
trol applications can then be realized by separating and scheduling the control tasks
inside the partitions, similar to [BCP20]. The modification of hypervisors provides dif-
ferent degrees of separation. Modification of the Xen hypervisor [The21] to guarantee
timing constraints was proposed by Masrur et al. [MDPC10]. The authors modified
the hypervisor with a new scheduler based on a fixed-priority policy and a control loop
to control the timing constraints of virtual machines. [DP19] addressed safety critical
applications running in the fog and how the FCP must cater to these specific require-
ments.

One major research themes is resource management in the fog. In [HV19], the authors
identified and classified the architectures, infrastructure, and underlying algorithms for
managing resources in fog/edge computing. The authors of [PRGS18] proposed a list
scheduling-based heuristics to solve this problem. The authors demonstrated the fea-
sibility of reconfiguring the scheduled network at runtime for industrial applications
within the fog. Reference [JPJ17] introduced a vulnerability-based method to quantify
the security performance of communications on distributed systems. Fault-tolerant as-
pects were discussed in [JHZJ18], where the design problem is to minimize the sched-
ule length and security vulnerability of the application, subject to given fault-tolerant
constraints. A multi-objective optimization method was then proposed to find the best
solutions. Reference [PGOP14] discussed potentially contradicting design constraints:
real-time capability versus scalability. This paper suggested a design methodology and
architecture as a step toward perfectly scalable real-time systems, i.e., systems with
deterministic timing behavior and run-time reconfiguration.

Industry4.0 system architectures: Cyber-Physical System (CPS) in industrial infras-
tructures also deal with the combination of mechatronics, communication, and in-
formation technologies to control distributed physical processes and systems. They
are designed as a network of interacting software and hardware devices and systems,
many of them with a higher level of decision-making capability in two respects: auto-
nomic with self-decision processes and collaborative with negotiation-based decision
processes. Recently, a number of European projects have focused on flexible archi-
tectures for Industry 4.0-driven CPSs as well as distributed control systems (DCS). A
common design goal for various reference architectures for Industry 4.0 is to introduce
dynamic and flexible interaction among components [LCK16]. One of these initiatives
is the German Industry 4.0 initiative, which specifies the Reference Architecture Model
Industry 4.0 (RAMI 4.0) [DIN SPEC 91345].

150
Paper D: Electric Drives as Fog Nodes in a Fog Computing-based

Industrial Use Case

We describe three architectural approaches detailed in the EU and German projects—
PERFoRM, IMPROVE, and BaSys 4.0. Production harmonizEd Reconfguration of
Flexible Robots and Machinery (PERFoRM) focuses on increasing flexibility and con-
figurability in manufacturing. The primary goal is to transform existing systems into
flexible and reconfigurable systems by providing an architecture with a common infras-
tructure for different industries.3 The aim of the Innovative Modeling approaches for
Production systems tO Raise Validatable Efficiency (IMPROVE) project is to develop
a decision support system for tasks such as diagnosis and optimization. This is realized
by the creation of a virtual factory that serves as a basis for model development and
validation. Therefore, data from several systems in the plant need to be aggregated and
integrated.4 BaSys 4.0 stands for Basic System Industry 4.0, and it abstracts the overall
production process and allows optimization prior to making the actual changes in the
system. In addition, this system architecture provides real-time capabilities for critical
process control functions [TWZ+17].

5.6 Conclusions

In this study, we addressed electric drives, which are widely used in industrial applica-
tions. We proposed a way to re-engineer them as FNs, a process that we called fogifi-
cation, based on the recently proposed FORA FCP reference architecture. We modeled
and designed the fogified drive architecture using the AADL, capturing the main com-
ponents and their interconnections. The design was driven by a set of requirements
that we created that consider both the baseline functionality of the drives and their
envisioned role as FNs. Fog-based drives are naturally located at the edge of the net-
work, close to the machines, sensors, and actuators. Using the proposed architecture,
we identified a solution for a self baggage drop system UC. We defined several KPIs
for evaluating the suitability of our fog-based architecture for the UC. The evaluation
results show improved performance, reduced hardware cost, and an increased analytics
capability, without jeopardizing safety and security or the performance of virtualized
critical control applications. As the evaluation shows, the fog-based drive architecture
is a promising approach to implement the functionalities envisioned in Industry 4.0.
In our future work, we will further integrate required technology components for the
implementation of the use case.

3http://www.horizon2020-perform.eu
4http://www.improve-vfof.eu

Bibliography

[ABR+93] Neil Audsley, Alan Burns, Mike Richardson, Ken Tindell, and Andy J
Wellings. Applying new scheduling theory to static priority pre-
emptive scheduling. Software engineering journal, 8(5):284–292,
1993.

[ÅCES00] K. Årzén, A. Cervin, J. Eker, and L. Sha. An introduction to control
and scheduling co-design. In Proceedings of IEEE Conference on
Decision and Control, volume 5. IEEE, 2000.

[ACR20] ACRN. Official Website of the Project ACRN™. http://
projectacrn.org/, 2019 (accessed May 1, 2020).

[AHG20] Anna Arestova, Kai-Steffen Jens Hielscher, and Reinhard German.
Design of a hybrid genetic algorithm for time-sensitive networking.
In Measurement, Modelling and Evaluation of Computing Systems.
Springer International Publishing, 2020.

[AHM18] A. A. Atallah, G. B. Hamad, and O. A. Mohamed. Fault-Resilient
Topology Planning and Traffic Configuration for IEEE 802.1Qbv TSN
Networks. In 2018 IEEE 24th International Symposium on On-Line
Testing And Robust System Design, pages 151–156, 2018.

[Alm03] Luís Almeida. Response time analysis and server design for hier-
archical scheduling. In proceedings of the IEEE Real-Time Systems
Symposium Work-in-Progress. Citeseer, 2003.

[ALR+01] Algirdas Avizienis, Jean-Claude Laprie, Brian Randell, et al. Funda-
mental concepts of dependability. University of Newcastle upon Tyne,
Computing Science, 2001.

http://projectacrn.org/
http://projectacrn.org/

152 BIBLIOGRAPHY

[AS99] Tarek F Abdelzaher and Kang G Shin. Combined task and message
scheduling in distributed real-time systems. IEEE Transactions on
parallel and distributed systems, 10(11):1179–1191, 1999.

[ATD19] Cosmin Avasalcai, Christos Tsigkanos, and Schahram Dustdar. De-
centralized resource auctioning for latency-sensitive edge computing.
In IEEE International Conference on Edge Computing, pages 72–76,
2019.

[AW97] KJ Astrom and B Wittenmark. Computer Controlled System. Prentice-
Hall, 1997.

[AYY15] Swati Agarwal, Shashank Yadav, and Arun Kumar Yadav. An archi-
tecture for elastic resource allocation in Fog Computing. International
Journal of Computer Science & Communication, 6(2):201–207, 2015.

[BBB+09] James Barhorst, Todd Belote, Pam Binns, Jon Hoffman, James Pau-
nicka, Prakash Sarathy, John Scoredos, Peter Stanfill, Douglas Stuart,
and Russell Urzi. A research agenda for mixed-criticality systems.
Cyber-Physical Systems Week, 12, 2009.

[BBC17] P. Basquel, R. Burke, and P. Curran. Optimal closed-loop transfer
functions for non-standard performance indices. In Irish Signals and
Systems Conference, pages 1–6, June 2017.

[BBM+16] Harald Bauer, Cornelius Baur, Detlev Mohr, Andreas Tschiesner,
Thomas Weskamp, Knut Alicke, and D Wee. Industry 4.0 after the
initial hype–where manufacturers are finding value and how they can
best capture it. McKinsey Digital, 2016.

[BCA+09] S. Bak, D. K. Chivukula, O. Adekunle, M. Sun, M. Caccamo, and
L. Sha. The System-Level Simplex Architecture for Improved Real-
Time Embedded System Safety. In Proceeding of IEEE Real-Time
and Embedded Technology and Applications Symposium, pages 99–
107, 2009.

[BCP19] M. Barzegran, A. Cervin, and P. Pop. Towards Quality-of-Control-
Aware Scheduling of Industrial Applications on Fog Computing Plat-
forms. In Proceeding of the ACM Workshop on Fog Computing and
the IoT, pages 1–5, 2019.

[BCP20] Mohammadreza Barzegaran, Anton Cervin, and Paul Pop. Perfor-
mance optimization of control applications on fog computing plat-
forms using scheduling and isolation. IEEE Access, 8:104085–
104098, 2020.

[BD12] J Berthing and AS Danfoss. D5. 6 drive controller. Artemis JU RE-
COMP Project, 2012.

BIBLIOGRAPHY 153

[BD13] Alan Burns and Robert Davis. Mixed criticality systems—a review.
Department of Computer Science, University of York, Tech. Rep, pages
1–69, 2013.

[BD18] Alan Burns and Robert I Davis. A survey of research into mixed crit-
icality systems. ACM Computing Surveys, 50(6):82, 2018.

[BDQ+20] Mohammadreza Barzegaran, Nitin Desai, Jia Qian, Koen Tange,
Bahram Zarrin, Paul Pop, and Juha Kuusela. Fogification of elec-
tric drives: An industrial use case. In Proceeding of the IEEE Interna-
tional Conference on Emerging Technologies and Factory Automation,
volume 1, pages 77–84, 2020.

[BDQP21] Mohammadreza Barzegaran, Nitin Desai, Jia Qian, and Paul Pop.
Electric drives as fog nodes in a fog computing-based industrial use
case. Submitted to IET Journal of Engineering, 2021.

[Bea04] Bernard C Beaudreau. Mass production, the stock market crash, and
the great depression: the macroeconomics of electrification, volume
175. iUniverse, 2004.

[BFG+95] Edward Bensley, Lawrence Fisher, Mike Gates, James Houchens,
Arkady Kanevsky, Soohee Kim, Peter Krupp, Alice Schafer, and Bha-
vani Thuraisingham. Evolvable real-time C3 systems. In Proceed-
ings of the IEEE International Conference on Engineering of Complex
Computer Systems, pages 153–166, 1995.

[BI07] Moris Behnam and Damir Isovic. Real-time control and scheduling
co-design for efficient jitter handling. In Proceeding of the IEEE Inter-
national Conference on Embedded and Real-Time Computing Systems
and Applications, pages 516–524, 2007.

[BK05] Edmund K Burke and Graham Kendall. Search methodologies.
Springer, 2005.

[BKA+20] Mohammadreza Barzegaran, Vasileios Karagiannis, Cosmin Avasal-
cai, Paul Pop, Stefan Schulte, and Schahram Dustdar. Towards
Extensibility-Aware Scheduling of Industrial Applications on Fog
Nodes. In Proceeding of the IEEE International Conference on
Emerging Technologies and Factory Automation, pages 67–75, 2020.

[BLAC05] Giorgio Buttazzo, Giuseppe Lipari, Luca Abeni, and Marco Caccamo.
Soft Real-Time Systems. Springer, 2005.

[BM07] Jesper Berthing and Thomas Maier. Formalised Implementation of
Safety Related HW/SW Architectures in Compliance with Functional
Safety Requirements. In Proceeding of the IET International Confer-
ence on System Safety, pages 153–158, 2007.

154 BIBLIOGRAPHY

[BM16] Dennis M Buede and William D Miller. The engineering design of
systems: models and methods. John Wiley & Sons, 2016.

[BM20] Julian Bellendorf and Zoltán Ádám Mann. Classification of opti-
mization problems in fog computing. Future Gener. Comput. Syst.,
107:158–176, 2020.

[BMNZ14] Flavio Bonomi, Rodolfo Milito, Preethi Natarajan, and Jiang Zhu. Fog
computing: A platform for internet of things and analytics. In Big
Data and Internet of Things: A Roadmap for Smart Environments,
pages 169–186. Springer, 2014.

[BMZA12] Flavio Bonomi, Rodolfo Milito, Jiang Zhu, and Sateesh Addepalli.
Fog computing and its role in the Internet of Things. In Proceedings of
the ACM Workshop on Mobile Cloud Computing, pages 13–16, 2012.

[BN16] Ion Boldea and Syed A Nasar. Electric drives. CRC press, 2016.

[BP21a] Mohammadreza Barzegaran and Paul Pop. Communication Schedul-
ing for Control Performance in TSN-based Fog Computing Platforms.
IEEE Access, 9:50782–50797, 2021.

[BP21b] Mohammadreza Barzegaran and Paul Pop. Extensibility-Aware Fog
Computing Platform Configuration for Mixed-Criticality Applica-
tions. Submitted to IEEE Transactions on Services Computing, 2021.

[BPZ02] M.S. Branicky, S.M. Phillips, and Wei Zhang Wei Zhang. Scheduling
and feedback co-design for networked control systems. Proceedings
of the IEEE Conference on Decision and Control, 2(December):1211–
1217, 2002.

[BRZ+21] Mohammadreza Barzegaran, Niklas Reusch, Luxi Zhao, Silviu
S. Craciunas, and Paul Pop. Real-Time Guarantees for Critical Traf-
fic in IEEE 802.1Qbv TSN Networks with Unscheduled End-Systems.
arXiv preprint arXiv:2105.01641, 2021.

[But11] Giorgio C Buttazzo. Hard real-time computing systems: predictable
scheduling algorithms and applications, volume 24. Springer Science
& Business Media, 2011.

[BZP20] Mohammadreza Barzegaran, Bahram Zarrin, and Paul Pop. Quality-
of-control-aware scheduling of communication in TSN-based fog
computing platforms using constraint programming. In Workshop on
Fog Computing and the IoT, pages 1–4. Schloss Dagstuhl-Leibniz-
Zentrum für Informatik, 2020.

[CBB17] Mung Chiang, Bharath Balasubramanian, and Flavio Bonomi. Fog for
5G and IoT, volume 288. Wiley Online Library, 2017.

BIBLIOGRAPHY 155

[CEBÅ02] Anton Cervin, Johan Eker, Bo Bernhardsson, and Karl Erik Årzén.
Feedback-feedforward scheduling of control tasks. Real-Time Sys-
tems, 23(1-2):25–53, 2002.

[Cer03] Anton Cervin. Integrated Control and Real-Time Scheduling. PhD
thesis, Lund University, 2003.

[CJK16] Hyun Jun Cha, Woo Hyuk Jeong, and Jong Chan Kim. Control-
Scheduling Codesign Exploiting Trade-Off between Task Periods and
Deadlines. Mobile Information Systems, 2016, 2016.

[CLL18] Ching-Han Chen, Ming-Yi Lin, and Chung-Chi Liu. Edge computing
gateway of the Industrial Internet of Things using multiple collabora-
tive micro controllers. IEEE Network, 32(1):24–32, 2018.

[CO16] Silviu S Craciunas and Ramon Serna Oliver. Combined task-and
network-level scheduling for distributed time-triggered systems. Real-
Time Systems, 52(2):161–200, 2016.

[COCS16] Silviu S Craciunas, Ramon Serna Oliver, Martin Chmelík, and Wil-
fried Steiner. Scheduling Real-Time Communication in IEEE 802.1
Qbv Time Sensitive Networks. In Proceedings of the International
Conference on Real-Time Networks and Systems, pages 183–192,
2016.

[Coma] International Electrotechnical Commission. IEC 61784-2-12, Indus-
trial communication networks-Profiles, Part 2: CPF 12 EtherCAT.

[Comb] International Electrotechnical Commission. IEC 61784-2-3, Indus-
trial communication networks-Profiles, Part 2: CPF 3 PROFIBUS &
PROFINET.

[Con05] FlexRay Consortium. Flexray communications system protocol spec-
ification version 2.1. http://www.flexray.com, 2005.

[COSS17] Silviu S Craciunas, Ramon Oliver Serna, and Wilfried Steiner. For-
mal scheduling constraints for time-sensitive networks. arXiv preprint
arXiv:1712.02246, 2017.

[CPBM19] Anton Cervin, Paolo Pazzaglia, Mohammadreza Barzegaran, and
Rouhollah Mahfouzi. Using JitterTime to analyze transient perfor-
mance in adaptive and reconfigurable control systems. In Proceeding
of IEEE International Conference on Emerging Technologies and Fac-
tory Automation, pages 1025–1032, 2019.

[CSB90] Houssine Chetto, Maryline Silly, and T Bouchentouf. Dynamic
scheduling of real-time tasks under precedence constraints. Real-Time
Systems, 2(3):181–194, 1990.

http://www.flexray.com

156 BIBLIOGRAPHY

[CSE14] Silviu S. Craciunas, R. Serna Oliver, and V. Ecker. Optimal static
scheduling of real-time tasks on distributed time-triggered networked
systems. In Proceedings of the IEEE Emerging Technology and Fac-
tory Automation, pages 1–8, 2014.

[CSL18] Hoon Sung Chwa, Kang G. Shin, and Jinkyu Lee. Closing the Gap
Between Stability and Schedulability: A New Task Model for Cyber-
Physical Systems. In in Proc. of IEEE Real-Time and Embedded Tech-
nology and Applications Symposium, pages 327–337, 2018.

[CSM16] T. Cruz, P. Simões, and E. Monteiro. Virtualizing programmable logic
controllers: Toward a convergent approach. IEEE Embedded Systems
Letters, 8(4):69–72, Dec 2016.

[CSOCS16] Silviu S. Craciunas, Ramon Serna Oliver, Martin Chmelík, and
Wilfried Steiner. Scheduling Real-Time Communication in IEEE
802.1Qbv Time Sensitive Networks. In Proceedings of the Interna-
tional Conference on Real-Time Networks and Systems, pages 183–
192, 2016.

[DBNA15] Paul Daugherty, Prith Banerjee, Walid Negm, and Allan E Alter. Driv-
ing unconventional growth through the industrial internet of things.
Accenture Technology, 2015.

[Dec05] J-D. Decotignie. Ethernet-based real-time and industrial communica-
tions. Proceedings of the IEEE, 93(6):1102–1117, 2005.

[DMP+14] Erik Dahlman, Gunnar Mildh, Stefan Parkvall, Janne Peisa, Joachim
Sachs, Yngve Selén, and Johan Sköld. 5g wireless access: require-
ments and realization. IEEE Communications Magazine, 52(12):42–
47, 2014.

[DN16] Frank Dürr and Naresh Ganesh Nayak. No-wait packet scheduling
for IEEE time-sensitive networks (TSN). In Proceedings of the In-
ternational Conference on Real-Time Networks and Systems, pages
203–212, 2016.

[DP19] Nitin Desai and Sasikumar Punnekkat. Safety of Fog-Based Industrial
Automation Systems. In Proceeding of the ACM Workshop on Fog
Computing and the IoT, page 6–10, 2019.

[EES+03] Jakob Engblom, Andreas Ermedahl, Mikael Sjödin, Jan Gustafsson,
and Hans Hansson. Worst-case execution-time analysis for embed-
ded real-time systems. International Journal on Software Tools for
Technology Transfer, 4(4):437–455, 2003.

BIBLIOGRAPHY 157

[EHÅ00] Johan Eker, Per Hagander, and Karl-Erik Årzén. A feedback sched-
uler for real-time controller tasks. Control Engineering Practice,
8(12):1369–1378, 2000.

[Ell66] F. J. Ellert. Performance indices for linear systems based on standard
forms. In Proceeding of the Symposium on Adaptive Processes, pages
643–648, Oct 1966.

[Erb17] Gizem Erboz. How to define industry 4.0: main pillars of industry 4.0.
Managerial trends in the development of enterprises in globalization
era, pages 761–767, 2017.

[Eur16] Eurotech. Bridging the gap between operational technology and
information technology. Red Hat, Inc. White Paper. Available:
https://bit.ly/3rHsfnO, 2016.

[Eur21] European Telecommunications Standards Institute. Mo-
bile edge computing framework and reference architecture.
http://www.etsi.org/deliver/etsi_gs/MEC/001_099/
003/01.01.01_60/gs_MEC003v010101p.pdf, 2016 (accessed
May 7, 2021).

[FGH06] Peter H Feiler, David P Gluch, and John J Hudak. The architecture
analysis & design language (AADL): An introduction. Technical re-
port, Carnegie-Mellon Univ Pittsburgh PA Software Engineering Inst,
2006.

[FHC+19] Jonathan Falk, David Hellmanns, Ben Carabelli, Naresh Nayak, Frank
Dürr, Stephan Kehrer, and Kurt Rothermel. NeSTiNg: Simulating
IEEE time-sensitive networking (TSN) in OMNeT++. In Proceeding
of the International Conference on Networked Systems, pages 1–8,
2019.

[FLV03] Peter H Feiler, Bruce Lewis, and Steve Vestal. The SAE avionics ar-
chitecture description language (AADL) standard: A basis for model-
based architecture-driven embedded systems engineering. Techni-
cal report, ARMY AVIATION AND MISSILE COMMAND RED-
STONE ARSENAL AL, 2003.

[FM02] Xiang Feng and Aloysius K Mok. A model of hierarchical real-time
virtual resources. In Real-Time Systems Symposium, pages 26–35,
2002.

[Fog21] Fog Computing and Networking Architecture Framework. IEEE
1934-2018 - IEEE Standard for Adoption of OpenFog Reference Ar-
chitecture for Fog Computing. https://standards.ieee.org/
standard/1934-2018.html, 2018 (accessed April 1, 2021).

http://www.etsi.org/deliver/etsi_gs/MEC/001_099/003/01.01.01_60/gs_M EC003v010101p.pdf
http://www.etsi.org/deliver/etsi_gs/MEC/001_099/003/01.01.01_60/gs_M EC003v010101p.pdf
https://standards.ieee.org/standard/1934-2018.html
https://standards.ieee.org/standard/1934-2018.html

158 BIBLIOGRAPHY

[FOR21] FORA. Fog Computing Platform: requirements and initial designs.
http://www.fora-etn.eu/deliverables/, 2019 (accessed May
1, 2021).

[Fou21] Open Infrastructure Foundation. Open Source Edge Computing Ar-
chitecture. https://www.openstack.org, 2012 (accessed April 1,
2021).

[FQ12] M. Fan and G. Quan. Harmonic semi-partitioned scheduling for fixed-
priority real-time tasks on multi-core platform. In Proceeding of
the IEEE Design, Automation Test in Europe Conference Exhibition,
pages 503–508, 2012.

[GASR19] Mostafa Ghobaei-Arani, Alireza Souri, and Ali A Rahmanian. Re-
source management approaches in fog computing: a comprehensive
review. Journal of Grid Computing, pages 1–42, 2019.

[GBFD] José Luis Gutiérrez, Jesper Berthing, David Fernández, and Javier
Dıaz. Safety-critical platform model based on certification standards.
III Jornadas de Computación Empotrada, JCE, 12.

[GGZ+12] Liangpeng Guo, Arkadeb Ghosal, Haibo Zeng, Paolo Giusto, and Al-
berto Sangiovanni-Vincentelli. Methods and tools for calculating the
flexibility of automotive hw/sw architectures. SAE International Jour-
nal of Passenger Cars-Electronic and Electrical Systems, 5(2012-01-
0005):17–26, 2012.

[Gil16] Alasdair Gilchrist. Introducing industry 4.0. In Industry 4.0, pages
195–215. Springer, 2016.

[GITJ14] Omid Givehchi, Jahanzaib Imtiaz, Henning Trsek, and Juergen
Jasperneite. Control-as-a-service from the cloud: A case study for
using virtualized PLCs. In Proceedings of the IEEE Workshop on
Factory Communication Systems, pages 1–4, May 2014.

[GJF12] Piotr Gaj, Jürgen Jasperneite, and Max Felser. Computer commu-
nication within industrial distributed environment—a survey. IEEE
Transactions on Industrial Informatics, 9(1):182–189, 2012.

[GK17] Farid Golnaraghi and Benjamin C Kuo. Automatic control systems.
McGraw-Hill Education, 2017.

[GK19] Mario Gleirscher and Stefan Kugele. Assurance of system safety:
A survey of design and argument patterns. arXiv preprint
arXiv:1902.05537, 2019.

[Glo21] Gartner IT Glossary. Operational technology. http://www.
gartner.com/it-glossary/operational-technology-ot,
2015 (accessed March 3, 2021).

http://www.fora-etn.eu/deliverables/
https://www.openstack.org
http://www.gartner.com/it-glossary/operational-technology-ot
http://www.gartner.com/it-glossary/operational-technology-ot

BIBLIOGRAPHY 159

[GLSC17] Omid Givehchi, Klaus Landsdorf, Pieter Simoens, and Armando Wal-
ter Colombo. Interoperability for industrial cyber-physical systems:
An approach for legacy systems. IEEE Transactions on Industrial In-
formatics, 13(6):3370–3378, 2017.

[GMS+15] Thomas Goldschmidt, Mahesh Kumar Murugaiah, Christian Sonntag,
Bastian Schlich, Sebastian Biallas, and Peter Weber. Cloud-based con-
trol: A multi-tenant, horizontally scalable soft-PLC. In Proceedings of
the IEEE International Conference on Cloud Computing, pages 909–
916, 2015.

[Goo21] Google. Google OR-Tools. https://developers.google.com/
optimization, Accessed on May 1, 2021.

[GRHMM+15] Jose Luis Gutiérrez-Rivas, Simon Holmbacka, Miguel Míndez-
Macías, Wictor Lund, Sebastien Lafond, Johan Lilius, and Javier
Díaz-Alonso. Safe motor controller in a mixed-critical environment
with runtime updating capabilities. Journal of Universal Computer
Science, 21(2):177–205, 2015.

[Gro21] IEEE 802.3 Ethernet Working Group. Standards for ethernet net-
works. https://www.ieee802.org/3/, 2021 (accessed April 1,
2021).

[GRS96] Michael Gagliardi, Ragunathan Rajkumar, and Lui Sha. Designing for
evolvability: Building blocks for evolvable real-time systems. In Pro-
ceedings of the IEEE Real-Time Technology and Applications, pages
100–109, 1996.

[GVCL14] Marisol García-Valls, Tommaso Cucinotta, and Chenyang Lu. Chal-
lenges in real-time virtualization and predictable cloud computing.
Journal of Systems Architecture, 60(9):726–740, 2014.

[GZPS17] Voica Gavrilut, Bahram Zarrin, Paul Pop, and Soheil Samii. Fault-
tolerant topology and routing synthesis for IEEE Time-Sensitive Net-
working. In Proceedings of the International Conference on Real-
Time Networks and Systems, pages 267–276, 2017.

[GZRP18] Voica Gavriluţ, Luxi Zhao, Michael L Raagaard, and Paul Pop. AVB-
aware routing and scheduling of time-triggered traffic for TSN. IEEE
Access, 6:75229–75243, 2018.

[HCÅ02] Dan Henriksson, Anton Cervin, and Karl-Erik Årzén. Truetime: Sim-
ulation of control loops under shared computer resources. IFAC Pro-
ceedings Volumes, 35(1):417–422, 2002.

[HD92] Kenneth Hoyme and Kevin Driscoll. Safebus. In Proceedings of the
IEEE/AIAA Digital Avionics Systems Conference, pages 68–73, 1992.

https://developers.google.com/optimization
https://developers.google.com/optimization
https://www.ieee802.org/3/

160 BIBLIOGRAPHY

[HD19] Austin Hughes and Bill Drury. Electric motors and drives: fundamen-
tals, types and applications. Newnes, 2019.

[HDNQ17] Pengfei Hu, Sahraoui Dhelim, Huansheng Ning, and Tie Qiu. Survey
on fog computing: architecture, key technologies, applications and
open issues. Journal of network and computer applications, 98:27–
42, 2017.

[Hea02] Steve Heath. Embedded systems design. Elsevier, 2002.

[HGB14] Derek R Harp and Bengt Gregory-Brown. IT/OT convergence bridg-
ing the divide. NEX DEFENSE, 2014.

[HV19] Cheol-Ho Hong and Blesson Varghese. Resource Management in
Fog/Edge Computing: A Survey on Architectures, Infrastructure, and
Algorithms. ACM Computing Surveys, 52(5), 2019.

[HZ19] Zhihong Huo and Zhixue Zhang. Scheduling and control co-design
for networked wind energy conversion systems. Global Energy Inter-
connection, 2(4):328 – 335, 2019.

[IBM21] IBM Cloud Education. Hypervisors. http://ibm.biz/
hypervisors-guide, 2021 (accessed April 1, 2021).

[IEC03] IEC. TIEC 61131–3 2nd Edition Programmable Controllers-
Programming Languages. Technical report, IEC, 2003.

[IEE14] IEEE. 802.1Q-2014 - Bridges and Bridged Networks. http://www.
ieee802.org/1/pages/802.1Q.html, 2014.

[IEE17] IEEE. 802.1ASrev—timing and synchronization for time-sensitive ap-
plications. http://www.ieee802.org/1/pages/802.1AS-rev.
html, 2017.

[IEE21a] IEEE. Official Website of the 802.1 Audio Video Bridging Task
Group. https://www.ieee802.org/tsn/802-1as-rev, 2013 (ac-
cessed April 1, 2021).

[IEE21b] IEEE. Official Website of the 802.1 Time-Sensitive Networking Task
Group. http://www.ieee802.org/1/pages/tsn.html, 2016 (ac-
cessed May 1, 2021).

[IM94] David Isaac and Gail McConaughy. The role of architecture and evo-
lutionary development in accommodating change. In INCOSE Inter-
national Symposium, volume 4, pages 503–508. Wiley Online Library,
1994.

http://ibm.biz/hypervisors-guide
http://ibm.biz/hypervisors-guide
http://www.ieee802.org/1/pages/802.1Q.html
http://www.ieee802.org/1/pages/802.1Q.html
http://www.ieee802.org/1/pages/802.1AS-rev.html
http://www.ieee802.org/1/pages/802.1AS-rev.html
https://www.ieee802.org/tsn/802-1as-rev
http://www.ieee802.org/1/pages/tsn.html

BIBLIOGRAPHY 161

[Int10] International Electrotechnical Commission. IEC 61508: Functional
safety of electrical/electronic/programmable electronic safety-related
systems, 2010.

[IW17] Eyal Itkin and Avishai Wool. A security analysis and revised secu-
rity extension for the precision time protocol. IEEE Transactions on
Dependable and Secure Computing, 17(1):22–34, 2017.

[JAAH18] Mohammad Jbair, Bilal Ahmad, Mus’ab H. Ahmad, and Robert Har-
rison. Industrial cyber physical systems: A survey for control-
engineering tools. In IEEE Industrial Cyber-Physical Systems, pages
270–276, 2018.

[JHZJ18] W. Jiang, H. Hu, J. Zhan, and K. Jiang. Work-in-Progress: Design
of Security-Critical Distributed Real-Time Applications with Fault-
Tolerant Constraint. In Proceeding of the International Conference on
Embedded Software, pages 1–2, 2018.

[JPJ17] Wei Jiang, Paul Pop, and Ke Jiang. Design Optimization for Security-
and Safety-Critical Distributed Real-Time Applications. Microproces-
sors and Microsystems, 52(C):401–415, 2017.

[JX07] P. Naghshtabrizi J. P. Hespanha and Y. Xu. A Survey of Recent Results
in Networked Control Systems. Proceedings of the IEEE, 95(1):138–
162, 2007.

[Kar19] Vasileios Karagiannis. Compute node communication in the fog: Sur-
vey and research challenges. In ACM Workshop on Fog Computing
and the IoT, pages 1–5, 2019.

[KHS10] Andy Koronios, Abrar Haider, and Kristian Steenstrup. Information
and operational technologies nexus for asset lifecycle management.
In Dimitris Kiritsis, Christos Emmanouilidis, Andy Koronios, and
Joseph Mathew, editors, Engineering Asset Lifecycle Management,
pages 112–119, London, 2010. Springer London.

[KJ09] Mostafa Haghi Kashani and Mohsen Jahanshahi. Using simulated
annealing for task scheduling in distributed systems. In Proceeding
of the IEE International Conference on Computational Intelligence,
Modelling and Simulation, pages 265–269, 2009.

[KLW11] Henning Kagermann, Wolf-Dieter Lukas, and Wolfgang Wahlster. In-
dustrie 4.0: Mit dem internet der dinge auf dem weg zur 4. indus-
triellen revolution. VDI nachrichten, 13(1):2–3, 2011.

[Kni02] John C. Knight. Safety critical systems: Challenges and directions. In
Proceedings of the International Conference on Software Engineering,

162 BIBLIOGRAPHY

page 547–550, New York, NY, USA, 2002. Association for Comput-
ing Machinery.

[Kop11] Hermann Kopetz. Real-time systems: design principles for distributed
embedded applications. Springer Science & Business Media, 2011.

[KP17] Vasileios Karagiannis and Apostolos Papageorgiou. Network-
integrated edge computing orchestrator for application placement. In
IEEE International Conference on Network and Service Management,
pages 1–5, 2017.

[Krs09] Miroslav Krstic. Systems & Control: Foundations and Applica-
tions Delay Compensation for Nonlinear, Adaptive, and PDE Systems.
Birkhäuser Boston, 2009.

[KSLP19] Vasileios Karagiannis, Stefan Schulte, Joao Leitao, and Nuno
Preguica. Enabling fog computing using self-organizing compute
nodes. In International Conference on Fog and Edge Computing,
pages 1–10, 2019.

[KW07] Robert Kaiser and Stephan Wagner. The pikeos concept: History and
design. SysGO AG White Paper. Available: http://www. sysgo. com,
2007.

[KZ09] Andrew Kornecki and Janusz Zalewski. Certification of software for
real-time safety-critical systems: state of the art. Innovations in Sys-
tems and Software Engineering, 5(2):149–161, 2009.

[LB03] Giuseppe Lipari and Enrico Bini. Resource partitioning among real-
time applications. In Proceedings of the Euromicro Conference on
Real-Time Systems, pages 151–158, 2003.

[LB10] Giuseppe Lipari and Enrico Bini. A framework for hierarchical
scheduling on multiprocessors: from application requirements to run-
time allocation. In IEEE Real-Time Systems Symposium, pages 249–
258, 2010.

[LC02] B. Lincoln and A. Cervin. Jitterbug: a tool for analysis of real-time
control performance. Proceedings of the IEEE Conference on Deci-
sion and Control, 2(December):1319–1324, 2002.

[LCK16] Paulo Leitão, Armando Walter Colombo, and Stamatis Karnouskos.
Industrial automation based on cyber-physical systems technologies:
Prototype implementations and challenges. Computers in Industry,
81:11 – 25, 2016.

[LCSW14] J Lin, Albert MK Cheng, Douglas Steel, and Michael Yu-Chi Wu.
Scheduling mixed-criticality real-time tasks with fault tolerance. In
Workshop on Mixed Criticality Systems, 2014.

BIBLIOGRAPHY 163

[Lee08] Edward A Lee. Cyber physical systems: Design challenges. In
Proceeding og the IEEE international symposium on object and
component-oriented real-time distributed computing, pages 363–369,
2008.

[LJYZ17] Jianhua Li, Jiong Jin, Dong Yuan, and Hongke Zhang. Virtual fog: A
virtualization enabled fog computing framework for internet of things.
IEEE Internet of Things Journal, 5(1):121–131, 2017.

[LRL09] Karthik Lakshmanan, Ragunathan Rajkumar, and John Lehoczky. Par-
titioned fixed-priority preemptive scheduling for multi-core proces-
sors. In Proceeding of the IEEE Euromicro Conference on Real-Time
Systems, pages 239–248, 2009.

[LT01] Marin Litoiu and Roberto Tadei. Real-time task scheduling with fuzzy
deadlines and processing times. Fuzzy Sets and Systems, 117(1):35–
45, 2001.

[Lui01] Lui Sha. Using simplicity to control complexity. IEEE Software,
18(4):20–28, 2001.

[LYD+17] Jian-Qiang Li, F Richard Yu, Genqiang Deng, Chengwen Luo, Zhong
Ming, and Qiao Yan. Industrial Internet: A survey on the enabling
technologies, applications, and challenges. IEEE Communications
Surveys & Tutorials, 19(3):1504–1526, 2017.

[Mal09] Rajib Mall. Real-time systems: theory and practice. Pearson Educa-
tion India, 2009.

[MAS+18] Rouhollah Mahfouzi, Amir Aminifar, Soheil Samii, Ahmed Rezine,
Petru Eles, and Zebo Peng. Stability-aware integrated routing and
scheduling for control applications in Ethernet networks. In Proceed-
ing of the Design, Automation & Test in Europe Conference, pages
682–687, 2018.

[MAS+19] Rouhollah Mahfouzi, Amir Aminifar, Soheil Samii, Petru Eles, and
Zebo Peng. Security-aware routing and scheduling for control appli-
cations on ethernet tsn networks. ACM Trans. Des. Autom. Electron.
Syst., 25(1), November 2019.

[MBD20] Ilir Murturi, Mohammadreza Barzegaran, and Schahram Dustdar. A
decentralized approach for determining configurator placement in dy-
namic edge networks. In Second International Conference on Cogni-
tive Machine Intelligence, pages 147–156. IEEE, 2020.

[McC96] Brian M McCay. Some thoughts on the quality of a computer-based
system’s architecture. In Proceedings of the IEEE Symposium and

164 BIBLIOGRAPHY

Workshop on Engineering of Computer-Based Systems, pages 228–
234, 1996.

[MDPC10] A. Masrur, S. Drossler, T. Pfeuffer, and S. Chakraborty. VM-Based
Real-Time Services for Automotive Control Applications. In Proceed-
ing of the IEEE International Conference on Embedded and Real-Time
Computing Systems and Applications, pages 218–223, Aug 2010.

[MEA+10] Malcolm S Mollison, Jeremy P Erickson, James H Anderson, San-
joy K Baruah, and John A Scoredos. Mixed-criticality real-time
scheduling for multicore systems. In Proceeding og the IEEE inter-
national conference on computer and information technology, pages
1864–1871, 2010.

[MG+11] Peter Mell, Tim Grance, et al. The NIST definition of cloud comput-
ing. 2011.

[MH18] Magdi S. Mahmoud and Mutaz M. Hamdan. Fundamental issues in
networked control systems. IEEE/CAA Journal of Automatica Sinica,
5(5):902–922, 2018.

[MKB18] Redowan Mahmud, Ramamohanarao Kotagiri, and Rajkumar Buyya.
Fog computing: A taxonomy, survey and future directions. In Internet
of Everything: Algorithms, Methodologies, Technologies and Perspec-
tives, pages 103–130. Springer, 2018.

[MLD09] Wolfgang Mahnke, Stefan-Helmut Leitner, and Matthias Damm. OPC
unified architecture. Springer Science & Business Media, 2009.

[MNH+15] Saad Mustafa, Babar Nazir, Amir Hayat, Sajjad A Madani, et al. Re-
source management in cloud computing: Taxonomy, prospects, and
challenges. Computers & Electrical Engineering, 47:186–203, 2015.

[MNY+18] Carla Mouradian, Diala Naboulsi, Sami Yangui, Roch H. Glitho,
Monique J. Morrow, and Paul A. Polakos. A Comprehensive Survey
on Fog Computing: State-of-the-Art and Research Challenges. IEEE
Communications Surveys and Tutorials, 20(1):416–464, 2018.

[MPC19] Shane D. McLean, Paul Pop, and Silviu S. Craciunas. Mapping and
scheduling of real-time tasks on multi-core autonomous driving plat-
forms. Technical report, Technical University of Denmark, January
2019.

[MSMB11] Thomas Moser, Wikan Danar Sunindyo, Munir Merdan, and Stefan
Biffl. Supporting runtime decision making in the production automa-
tion domain using design time engineering knowledge. Ontology and
Semantic Web for Manufacturing, pages 9–22, 2011.

BIBLIOGRAPHY 165

[MSZ11] Rupak Majumdar, Indranil Saha, and Majid Zamani. Performance-
aware scheduler synthesis for control systems. In Proceedings of
the ACM international conference on Embedded software, pages 299–
308, 2011.

[MWTP+13] Asma Mehiaoui, Ernest Wozniak, Sara Tucci-Piergiovanni, Chokri
Mraidha, Marco Di Natale, Haibo Zeng, Jean-Philippe Babau, Laurent
Lemarchand, and Sébastien Gerard. A two-step optimization tech-
nique for functions placement, partitioning, and priority assignment in
distributed systems. In Proceedings of the ACM SIGPLAN/SIGBED
conference on Languages, compilers and tools for embedded systems,
pages 121–132, 2013.

[MYV+04] Pau Martí, José Yépez, Manel Velasco, Ricard Villà, and Josep M.
Fuertes. Managing quality-of-control in network-based control sys-
tems by controller and message scheduling co-design. IEEE Transac-
tions on Industrial Electronics, 51(6):1159–1167, 2004.

[Neb21] Nebbiolo Technologies, Inc. Nebbiolo. https://www.nebbiolo.
tech/, 2021 (accessed April 1, 2021).

[NSL17] Nicolas Navet and Françoise Simonot-Lion. Automotive embedded
systems handbook. CRC press, 2017.

[OA09] Fatma A. Omara and Mona M. Arafa. Genetic Algorithms for Task
Scheduling Problem, pages 479–507. Springer Berlin Heidelberg,
Berlin, Heidelberg, 2009.

[Ope21a] OpenFog Consortium. OpenFog reference architecture for fog
computing. https://www.iiconsortium.org/pdf/OpenFog_
Reference_Architecture_2_09_17.pdf, 2017 (accessed May 1,
2021).

[Ope21b] OpenStack. Documentation on Nova Scheduler. https://docs.
openstack.org/developer/nova/filter_scheduler.html,
2020 (accessed May 7, 2021).

[OY02] Katsuhiko Ogata and Yanjuan Yang. Modern control engineering, vol-
ume 4. Prentice-Hall, 2002.

[PBO19] Maryam Pahlevan, Balakrishna Balakrishna, and Roman Obermaisser.
Simulation framework for clock synchronization in time sensitive net-
working. In Proceeding of the IEEE International Symposium on
Real-Time Distributed Computing, pages 213–220, 2019.

[PEPP04] Paul Pop, Petru Eles, Zebo Peng, and Traian Pop. Scheduling and
mapping in an incremental design methodology for distributed real-
time embedded systems. IEEE Transactions on Very Large Scale In-
tegration Systems, 12(8):793–811, 2004.

https://www.nebbiolo.tech/
https://www.nebbiolo.tech/
https://www.iiconsortium.org/pdf/OpenFog_Reference_Architecture_2_09_17.pdf
https://www.iiconsortium.org/pdf/OpenFog_Reference_Architecture_2_09_17.pdf
https://docs.openstack.org/developer/nova/filter_scheduler.html
https://docs.openstack.org/developer/nova/filter_scheduler.html

166 BIBLIOGRAPHY

[PG74] Gerald J Popek and Robert P Goldberg. Formal requirements for virtu-
alizable third generation architectures. Communications of the ACM,
17(7):412–421, 1974.

[PGOP14] Peter Priller, Werner Gruber, Niklas Olberding, and Dietmar Peinsipp.
Towards perfectly scalable real-time systems. In Proceeding of the In-
ternational Conference on Computer Safety, Reliability, and Security,
pages 212–223. Springer, 2014.

[Pic06] Bob Pickles. Avionics Full Duplex Switched Ethernet (AFDX). SBS
Technologies, 15(2):62–65, 2006.

[PIEP09] P. Pop, V. Izosimov, P. Eles, and Z. Peng. Design optimization
of time- and cost-constrained fault-tolerant embedded systems with
checkpointing and replication. IEEE Transactions on Very Large Scale
Integration Systems, 17(3):389–402, 2009.

[PML+19] Carlo Puliafito, Enzo Mingozzi, Francesco Longo, Antonio Puliafito,
and Omer Rana. Fog computing for the internet of things: A survey.
ACM Transactions on Internet Technology, 19(2):1–41, 2019.

[PMN+16] Q. Perret, P. Maurere, E. Noulard, C. Pagetti, P. Sainrat, and B. Tri-
quet. Temporal isolation of hard real-time applications on many-core
processors. In Proceeding of the IEEE Real-Time and Embedded Tech-
nology and Applications Symposium, pages 1–11, 2016.

[PO18] M. Pahlevan and R. Obermaisser. Genetic algorithm for scheduling
time-triggered traffic in time-sensitive networks. In Procceding of the
International Conference on Emerging Technologies and Factory Au-
tomation, volume 1, pages 337–344, 2018.

[PRCS16] Paul Pop, Michael Lander Raagaard, Silviu S Craciunas, and Wilfried
Steiner. Design optimisation of cyber-physical distributed systems
using IEEE Time-Sensitive Networks. IET Cyber-Physical Systems:
Theory & Applications, 1(1):86–94, 2016.

[PRGS18] Paul Pop, Michael Lander Raagaard, Marina Gutierrez, and Wilfried
Steiner. Enabling fog computing for industrial automation through
time-sensitive networking (TSN). IEEE Communications Standards
Magazine, pages 1–7, 2018.

[Pro21] Proton Technologies AG. General Data Protection Regulation.
https://gdpr.eu, 2021 (accessed April 1, 2021).

[PSS19] T. Park, S. Samii, and K. G. Shin. Design optimization of frame pre-
emption in real-time switched ethernet. In Proceeding of the Design,
Automation Test in Europe Conference, pages 420–425, 2019.

https://gdpr.eu

BIBLIOGRAPHY 167

[PTO19] Maryam Pahlevan, Nadra Tabassam, and Roman Obermaisser. Heuris-
tic list scheduler for time triggered traffic in time sensitive networks.
SIGBED Rev., 16(1):15–20, February 2019.

[PYKL11] Kyung Joon Park, Man Ki Yoon, Kyungtae Kang, and Chang Gun Lee.
Scheduling and control co-design under end-to-end response time con-
straints in cyber-physical systems. Proceeding of the IEEE Conference
on Computer Communications Workshops, pages 762–767, 2011.

[PZB+21] Paul Pop, Bahram Zarrin, Mohammadreza Barzegaran, Stefan
Schulte, Sasikumar Punnekkat, Jan Ruh, and Wilfried Steiner. The
FORA Fog Computing Platform for Industrial IoT. Information Sys-
tems, 98:101727, 2021.

[QBP21] Jia Qian, Mohammadreza Barzegaran, and Paul Pop. Decomposing
deep training solutions on fog computing platforms. In To be submit-
ted to ACM/IEEE Symposium on Edge Computing, 2021.

[QH20] Jia Qian and Lars Kai Hansen. What can we learn from gradients?
arXiv preprint arXiv:2010.15718, 2020.

[Rau14] Marvin Rausand. Reliability of safety-critical systems. Theory and
Applications; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2014.

[RHS97] Minsoo Ryu, Seongsoo Hong, and M. Saksena. Streamlining real-
time controller design: From performance specifications to end-to-end
timing constraints. In Proceedings of the IEEE Real-Time Technology
and Applications Symposium, pages 91–99, 1997.

[RL19] Richard Rennie and Jonathan Law. A dictionary of physics. Oxford
University Press, 2019.

[RLL94] David Rowe, John Leaney, and David Lowe. Defining systems
evolvability-a taxonomy of change. Change, 94:541–545, 1994.

[RPC20] Niklas Reusch, Paul Pop, and Silviu S. Craciunas. Safe and Secure
Configuration Synthesis for TSN-based Distributed Cyber-Physical
Systems using Constraint Programming. Technical report, Technical
University of Denmark, November 2020.

[RRW+03] John Regehr, Alastair Reid, Kirk Webb, Michael Parker, and Jay Lep-
reau. Evolving real-time systems using hierarchical scheduling and
concurrency analysis. In Proceeding of the IEEE Real-Time Systems
Symposium, pages 25–36, 2003.

[RS19] Jan Ruh and Wilfried Steiner. The need for deterministic virtualization
in the industrial internet of things. In Proceedings of the Workshop on
Fog Computing and the IoT, page 26–30, New York, NY, USA, 2019.
Association for Computing Machinery.

168 BIBLIOGRAPHY

[Rus00] John Rushby. Partitioning in avionics architectures: Requirements,
mechanisms, and assurance. Technical report, SRI International
MENLO Park CA Computer Science Lab, 2000.

[SCEP09] Soheil Samii, Anton Cervin, Petru Eles, and Zebo Peng. Integrated
Scheduling and Synthesis of Control Applications on Distributed Em-
bedded Systems. In Proceeding of the IEEE Design, Automation &
Test in Europe Conference & Exhibition, pages 57–62, 2009.

[Sch17] Klaus Schwab. The fourth industrial revolution. Currency, 2017.

[Sch21] Klaus Schwab. The fourth industrial revolution: what it means,
how to respond. https://www.weforum.org/agenda/2016/01/
the-fourth-industrial-revolution-what-it-means-and-how-to-respond/,
2016 (accessed March 3, 2021).

[SCS18a] R. Serna Oliver, S. S. Craciunas, and W. Steiner. IEEE 802.1Qbv Gate
Control List Synthesis Using Array Theory Encoding. In IEEE Real-
Time and Embedded Technology and Applications Symposium, pages
13–24, 2018.

[SCS18b] W. Steiner, S. S. Craciunas, and R. Serna Oliver. Traffic planning
for time-sensitive communication. IEEE Communications Standards
Magazine, 2(2):42–47, 2018.

[SCT13] Andy Stanford-Clark and Hong Linh Truong. MQTT for sensor net-
works (MQTT-SN) protocol specification. International Business Ma-
chines Corporation version, 1:2, 2013.

[SDD12] F. Smarra, A. D’Innocenzo, and M. D. Di Benedetto. Optimal co-
design of control, scheduling and routing in multi-hop control net-
works. In Proceeding of the IEEE Conference on Decision and Con-
trol, pages 1960–1965, 2012.

[SGAN+16] Zakaria Sahraoui, Emmanuel Grolleau, Mohamed Ahmed-Nacer,
Driss Mehdi, and Henri Bauer. Antinomy between schedulability and
quality of control using a feedback scheduler,. In Proceeding of the
ACM International Conference on Real-Time Networks and Systems,
pages 171–179, 2016.

[SGJM+20] Jorge Sanchez-Garrido, Antonio Jurado, Luis Medina, Rafael Ro-
driguez, Eduardo Ros, and Javier Diaz. Digital electrical substation
communications based on deterministic Time-Sensitive Networking
over Ethernet. IEEE Access, 8:93621–93634, 2020.

[SGM+16] Zakaria Sahraoui, Emmanuel Grolleau, Driss Mehdi, Mohamed
Ahmed-Nacer, and Abdenour Labed. Predictive-delay control based

https://www.weforum.org/agenda/2016/01/the-fourth-industrial-revolution-what-it-means-and-how-to-respond/
https://www.weforum.org/agenda/2016/01/the-fourth-industrial-revolution-what-it-means-and-how-to-respond/

BIBLIOGRAPHY 169

on real-time feedback scheduling. Simulation Modelling Practice and
Theory, 66:16–35, 2016.

[SGMC12] Reinhard Schneider, Dip Goswami, Alejandro Masrur, and Samarjit
Chakraborty. QoC-oriented efficient schedule synthesis for mixed-
criticality cyber-physical systems. In Proceeding of the IEEE Forum
on Specification and Design Languages, pages 60–67, 2012.

[SHB14] Zach Shelby, Klaus Hartke, and Carsten Bormann. The constrained
application protocol (CoAP). 2014.

[Sie08] Siemens Simatic. Profinet system description–system manual. Issue
A5E00298288-04, 6, 2008.

[Sin07] Oliver Sinnen. Task scheduling for parallel systems, volume 60. John
Wiley & Sons, 2007.

[SKR+18] Olena Skarlat, Vasileios Karagiannis, Thomas Rausch, Kevin Bach-
mann, and Stefan Schulte. A framework for optimization, service
placement, and runtime operation in the fog. In IEEE International
Conference on Utility and Cloud Computing, pages 164–173, 2018.

[SL03] Insik Shin and Insup Lee. Periodic resource model for compositional
real-time guarantees. In Proceeding of the IEEE Real-Time Systems
Symposium, pages 2–13, 2003.

[SL08] Insik Shin and Insup Lee. Compositional real-time scheduling frame-
work with periodic model. ACM Transactions on Embedded Comput-
ing Systems, 7(3):1–39, 2008.

[SLS95] Jay K. Strosnider, John P. Lehoczky, and Lui Sha. The deferrable
server algorithm for enhanced aperiodic responsiveness in hard real-
time environments. IEEE Transactions on Computers, 44(1):73–91,
1995.

[SLSS96] D. Seto, J. P. Lehoczky, L. Sha, and K. G. Shin. On task schedulability
in real-time control systems. In Proceeding of the IEEE Real-Time
Systems Symposium, pages 13–21, 1996.

[Smi03] Clifton L Smith. Understanding concepts in the defence in depth strat-
egy. In Proceeding of the IEEE International Carnahan Conference
on Security Technology, pages 8–16, 2003.

[Son09] Ye-Qiong Song. Networked control systems: From independent de-
signs of the network qos and the control to the co-design. IFAC Pro-
ceedings Volumes, 42(3):155 – 162, 2009.

170 BIBLIOGRAPHY

[SP16] Wilfried Steiner and Stefan Poledna. Fog computing as enabler for the
Industrial Internet of Things. e & i Elektrotechnik und Information-
stechnik, 133(7):310–314, 2016.

[Spe91] CAN Specification. Bosch. Robert Bosch GmbH, Postfach, 50, 1991.

[SR61] WC Schultz and VC Rideout. Control system performance measures:
Past, present, and future. IRE Transactions on Automatic Control,
(1):22–35, 1961.

[SR94] Kang G Shin and Parameswaran Ramanathan. Real-time computing:
A new discipline of computer science and engineering. Proceedings
of the IEEE, 82(1):6–24, 1994.

[SSL89] Brinkley Sprunt, Lui Sha, and John Lehoczky. Aperiodic task schedul-
ing for hard-real-time systems. Real-Time Systems, 1(1):27–60, 1989.

[SSS17] Daniel Simon, Alexandre Seuret, and Olivier Sename. Real-time con-
trol systems: feedback, scheduling and robustness. International Jour-
nal of Systems Science, 48(11):2368–2378, 2017.

[Ste10] W. Steiner. An Evaluation of SMT-Based Schedule Synthesis for
Time-Triggered Multi-hop Networks. In IEEE Real-Time Systems
Symposium, pages 375–384, 2010.

[Sto96] Neil R Storey. Safety Critical Computer Systems. Addison-Wesley
Longman Publishing Co., Inc., 1996.

[SVLN13] Kristian Sandström, Aneta Vulgarakis, Markus Lindgren, and Thomas
Nolte. Virtualization technologies in embedded real-time systems. In
Proceeding of the IEEE Conference on Emerging Technologies & Fac-
tory Automation, pages 1–8, 2013.

[SWP90] Behrooz Shirazi, Mingfang Wang, and Girish Pathak. Analysis and
evaluation of heuristic methods for static task scheduling. Journal of
Parallel and Distributed Computing, 10(3):222–232, 1990.

[SZ13] Hang Su and Dakai Zhu. An elastic mixed-criticality task model and
its scheduling algorithm. In Proceeding of the IEEE Design, Automa-
tion & Test in Europe Conference & Exhibition, pages 147–152, 2013.

[T+06] SEI AADL Team et al. An extensible open source AADL tool envi-
ronment (OSATE). Software Engineering Institute, 2006.

[TDDFD20] Koen Tange, Michele De Donno, Xenofon Fafoutis, and Nicola Drag-
oni. A systematic survey of industrial internet of things security: Re-
quirements and fog computing opportunities. IEEE Communications
Surveys & Tutorials, 22(4):2489–2520, 2020.

BIBLIOGRAPHY 171

[Tec21] TechNavio. Electric Drives Market by End-users, Prod-
uct, Power Rating, and Geography - Global Forecast
2019-2023. https://www.technavio.com/report/
electric-drives-market-industry-analysis, 2019 (ac-
cessed May 1, 2021).

[TG11] Yu Chu Tian and Li Gui. QoC elastic scheduling for real-time control
systems. Real-Time Systems, 47(6):534–561, 2011.

[The21] The Linux Foundation®. Xen Project. https://xenproject.org,
2019 (accessed May 1, 2021).

[THM02] H. Topcuoglu, S. Hariri, and Min-You Wu. Performance-effective
and low-complexity task scheduling for heterogeneous computing.
IEEE Transactions on Parallel and Distributed Systems, 13(3):260–
274, 2002.

[TSP15a] Domiţian Tămaş-Selicean and Paul Pop. Design optimization of
mixed-criticality real-time embedded systems. ACM Transactions on
Embedded Computing Systems, 14(3):50–55, 2015.

[TSP15b] Domitian Tamas-Selicean and Paul Pop. Design optimization of
mixed-criticality real-time systems. ACM Transaction on Embedded
Computing, 14(3):50–78, May 2015.

[TTT21] TTTech Computertechnik AG. Nerve. http://tttech.com/
products/industrial/industrial-iot/nerve, 2019 (accessed
May 1, 2021).

[TWZ+17] T. Terzimehic, M. Wenger, A. Zoitl, A. Bayha, K. Becker, T. Müller,
and H. Schauerte. Towards an industry 4.0 compliant control software
architecture using IEC 61499 OPC UA. In Proceeding of the IEEE
International Conference on Emerging Technologies and Factory Au-
tomation, pages 1–4, 2017.

[Ull75] Jeffrey D. Ullman. NP-complete scheduling problems. Journal of
Computer and System sciences, 10(3):384–393, 1975.

[Uni21] Universidad Politécnica de Valencia. XtratuM hypervisor. https:
//xtratum.org, 2019 (accessed May 1, 2021).

[Ves07] Steve Vestal. Preemptive scheduling of multi-criticality systems with
varying degrees of execution time assurance. In Proceeding of the
IEEE International Real-Time Systems Symposium, pages 239–243,
2007.

[VG01] Frank Vahid and Tony D Givargis. Embedded system design: a unified
hardware/software introduction. John Wiley & Sons, 2001.

https://www.technavio.com/report/electric-drives-market-industry-analysis
https://www.technavio.com/report/electric-drives-market-industry-analysis
https://xenproject.org
http://tttech.com/products/industrial/industrial-iot/nerve
http://tttech.com/products/industrial/industrial-iot/nerve
https://xtratum.org
https://xtratum.org

172 BIBLIOGRAPHY

[WCP+05] Wei Zheng, J. Chong, C. Pinello, S. Kanajan, and A. Sangiovanni-
Vincentelli. Extensible and scalable time triggered scheduling. In In-
ternational Conference on Application of Concurrency to System De-
sign, pages 132–141, 2005.

[WHL+19] Y. Wang, F. Huang, Y. Li, B. Pan, and Y. Wu. Hierarchical schedul-
ing and real-time analysis for vehicular time-sensitive network. In
Proceeding of the International Symposium on Computational Intelli-
gence and Design, volume 2, pages 23–26, 2019.

[Wik21a] Wikipedia, the free encyclopedia. Scheduling (computing). https://
en.wikipedia.org/wiki/Scheduling_(computing), 2021 (ac-
cessed April 1, 2021).

[Wik21b] Wikipedia, the free encyclopedia. Virtualization. https://en.
wikipedia.org/wiki/Virtualization, 2021 (accessed April 1,
2021).

[Wil94] Theodore J Williams. The Purdue enterprise reference architecture.
Computers in industry, 24(2-3):141–158, 1994.

[WMZ+11] Ying Wang, Dianfu Ma, Yongwang Zhao, Lu Zou, and Xianqi Zhao.
An AADL-based modeling method for ARINC653-based avionics
software. In Proceeding of the IEEE Annual Computer Software and
Applications Conference, pages 224–229, 2011.

[WS12] Zhi Wen Wang and Hong Tao Sun. Control and scheduling co-design
of networked control system: Overview and directions. In Proceed-
ings of the IEEE International Conference on Machine Learning and
Cybernetics, volume 3, pages 816–824, 2012.

[WSJD15] L. Wisniewski, M. Schumacher, J. Jasperneite, and C. Diedrich. In-
creasing flexibility of time triggered ethernet based systems by opti-
mal greedy scheduling approach. In Proceeding of the IEEE Confer-
ence on Emerging Technologies Factory Automation, pages 1–6, 2015.

[WZS+14] Yizhuo Wang, Yang Zhang, Yan Su, Xiaojun Wang, Xu Chen, Weix-
ing Ji, and Feng Shi. An adaptive and hierarchical task scheduling
scheme for multi-core clusters. Parallel Computing, 40(10):611 – 627,
2014.

[XABC17] Yang Xu, Karl-Erik Arzen, Enrico Bini, and Anton Cervin. LQG-
based control and scheduling co-design. IFAC 2017, pages 6069–
6074, 2017.

[XCÅ16] Yang Xu, Anton Cervin, and Karl Erik Årzén. Harmonic Schedul-
ing and Control Co-design. In Proceedings of the IEEE International

https://en.wikipedia.org/wiki/Scheduling_(computing)
https://en.wikipedia.org/wiki/Scheduling_(computing)
https://en.wikipedia.org/wiki/Virtualization
https://en.wikipedia.org/wiki/Virtualization

BIBLIOGRAPHY 173

Conference on Embedded and Real-Time Computing Systems and Ap-
plications, pages 182–187, 2016.

[XCÅ18] Yang Xu, Anton Cervin, and Karl Erik Årzén. Jitter-Robust LQG
Control and Real-Time Scheduling Co-Design. In Proceedings of the
American Control Conference, pages 3189–3196. IEEE, 2018.

[XX11] Yang Xu and Xiaoyao Xie. Modeling and analysis of security proto-
cols using colored petri nets. JCP, 6(1):19–27, 2011.

[XXL+14] S. Xi, M. Xu, C. Lu, L. T. X. Phan, C. Gill, O. Sokolsky, and I. Lee.
Real-time multi-core virtual machine scheduling in Xen. In Proceed-
ing of the International Conference on Embedded Software, pages 1–
10, Oct. 2014.

[YHQL15] S. Yi, Z. Hao, Z. Qin, and Q. Li. Fog Computing: Platform and Ap-
plications. In Proceeding of the IEEE Workshop on Hot Topics in Web
Systems and Technologies, pages 73–78, 2015.

[YLH+18] Wei Yu, Fan Liang, Xiaofei He, William Grant Hatcher, Chao Lu, Jie
Lin, and Xinyu Yang. A survey on the edge computing for the internet
of things. IEEE Access, 6:6900–6919, 2018.

[YLL15] Shanhe Yi, Cheng Li, and Qun Li. A survey of fog computing: con-
cepts, applications and issues. In Proceedings of the workshop on
mobile big data, pages 37–42, 2015.

[YLL18] Luxiu Yin, Juan Luo, and Haibo Luo. Tasks scheduling and resource
allocation in fog computing based on containers for smart manufactur-
ing. IEEE Transactions on Industrial Informatics, 14(10):4712–4721,
2018.

[YXC02] Yumin Zhang, Xiaobo Hu, and D. Z. Chen. Task scheduling and volt-
age selection for energy minimization. In Proceedings of the IEE De-
sign Automation Conference, pages 183–188, 2002.

[ZBP01] Wei Zhang, Michael S Branicky, and Stephen M Phillips. Stabil-
ity of networked control systems. IEEE Control Systems Magazine,
21(1):84–99, 2001.

[ZDN17] Yun-Bo Zhao, Hui Dong, and Hongjie Ni. Scheduling and control
co-design for control systems under computational constraints. IFAC-
PapersOnLine, 50(1):5881–5886, 2017.

[ZHY16] Xian Ming Zhang, Qing Long Han, and Xinghuo Yu. Survey on Re-
cent Advances in Networked Control Systems. IEEE Transactions on
Industrial Informatics, 12(5):1740–1752, 2016.

174 BIBLIOGRAPHY

[ZLZ15] Keliang Zhou, Taigang Liu, and Lifeng Zhou. Industry 4.0: Towards
future industrial opportunities and challenges. In Proceedings of the
IEEE International conference on fuzzy systems and knowledge dis-
covery, pages 2147–2152, 2015.

[ZS00] Khawar M Zuberi and Kang G Shin. Design and implementation of
efficient message scheduling for controller area network. IEEE Trans-
actions on Computers, 49(2):182–188, 2000.

[ZSB+12] Sergey Zhuravlev, Juan Carlos Saez, Sergey Blagodurov, Alexandra
Fedorova, and Manuel Prieto. Survey of scheduling techniques for
addressing shared resources in multicore processors. ACM Computing
Surveys, 45(1):1–28, 2012.

[ZSEP19] Yuanbin Zhou, Soheil Samii, Petru Eles, and Zebo Peng. Scheduling
optimization with partitioning for mixed-criticality systems. Journal
of Systems Architecture, 98:191–200, 2019.

[ZSWY17] Dan Zhang, Peng Shi, Qing Guo Wang, and Li Yu. Analysis and
synthesis of networked control systems: A survey of recent advances
and challenges. ISA Transactions, 66:376–392, 2017.

[Zur05] Richard Zurawski. Embedded systems handbook. CRC press, 2005.

[ZYS+09] Q. Zhu, Y. Yang, E. Scholte, M. D. Natale, and A. Sangiovanni-
Vincentelli. Optimizing extensibility in hard real-time distributed sys-
tems. In Real-Time and Embedded Technology and Applications Sym-
posium, pages 275–284, 2009.

[ZZZ+13] Qi Zhu, Haibo Zeng, Wei Zheng, Marco DI Natale, and Alberto
Sangiovanni-Vincentelli. Optimization of task allocation and priority
assignment in hard real-time distributed systems. ACM Transactions
on Embedded Computing Systems, 11(4):1–30, 2013.

	Summary (English)
	Summary (Danish)
	Preface
	Acknowledgments
	Abbreviations
	Contents
	1 Introduction
	1.1 Motivation and Background
	1.2 Fog Computing
	1.2.1 The FORA Fog Computing Platform

	1.3 System and Application Models
	1.3.1 Architecture Model and Example
	1.3.2 Application Model and Example
	1.3.3 Objectives

	1.4 Systems Engineering Decision Tasks and Related Work
	1.4.1 Related Work

	1.5 Thesis Overview and Contributions
	1.5.1 Paper A: Performance Optimization of Control Applications on Fog Computing Platforms Using Scheduling and Isolation
	1.5.2 Paper B: Communication Scheduling for Control Performance in TSN-based Fog Computing Platforms
	1.5.3 Paper C: Extensibility-Aware Fog Computing Platform Configuration for Mixed-Criticality Applications
	1.5.4 Paper D: Electric Drives as Fog Nodes in a Fog Computing-based Industrial Use Case

	2 Paper A: Performance Optimization of Control Applications on Fog Computing Platforms Using Scheduling and Isolation
	2.1 Introduction
	2.1.1 Contributions
	2.1.2 Outline of the Paper

	2.2 System Model
	2.2.1 Architecture Model
	2.2.2 Application Model

	2.3 Problem Formulation
	2.4 Control Theory
	2.4.1 Feedback Control System
	2.4.2 Control Design
	2.4.3 Calculation of Control Performance

	2.5 Solution
	2.5.1 Simulated Annealing
	2.5.2 Scheduling and Partitioning Heuristic (SPH)
	2.5.3 Cost Function
	2.5.4 SA Design Transformations
	2.5.5 Illustrative Example for FCPC

	2.6 Experimental Evaluation
	2.6.1 Realistic Test Case

	2.7 Related Work
	2.8 Conclusions and Future Work

	3 Paper B: Communication Scheduling for Control Performance in TSN-based Fog Computing Platforms
	3.1 Introduction
	3.1.1 Contributions
	3.1.2 Outline of the Paper

	3.2 System Model
	3.2.1 Architecture Model
	3.2.2 TSN Switch Model
	3.2.3 Application Model

	3.3 Problem Formulation
	3.4 Control Theory
	3.4.1 Feedback Control Systems and Control Design
	3.4.2 Modeling and Timing of Feedback Control Systems
	3.4.3 Quality of Control

	3.5 Constraint Programming
	3.5.1 CP model
	3.5.2 Constraints
	3.5.3 Analytical QoC CP model and Objective Function
	3.5.4 Search Strategy

	3.6 Evaluation
	3.6.1 Test Cases and Setup
	3.6.2 Comparison with the related work
	3.6.3 Evaluation on Synthetic Test Cases
	3.6.4 Evaluation on a Realistic Test Case
	3.6.5 OMNET++ validation
	3.6.6 Evaluation on a Hardware Platform

	3.7 Related Work
	3.8 Conclusions and Future Work

	4 Paper C: Extensibility-Aware Fog Computing Platform Configuration for Mixed-Criticality Applications
	4.1 Introduction
	4.2 System Models
	4.2.1 Architecture Model
	4.2.2 TSN Switch Model
	4.2.3 Application Model
	4.2.4 Scheduling Policies

	4.3 Problem Definition
	4.4 Proposed Solution
	4.4.1 CP model
	4.4.2 CP Constraints
	4.4.3 Objective function
	4.4.4 Search Strategy

	4.5 Evaluation
	4.5.1 Test Setup and Scenarios
	4.5.2 Supporting future control applications
	4.5.3 Response time analysis of Fog applications
	4.5.4 Extending with upgrades

	4.6 Related Work
	4.7 Conclusions

	5 Paper D: Electric Drives as Fog Nodes in a Fog Computing-based Industrial Use Case
	5.1 Introduction
	5.2 Electric Motors and Drives
	5.2.1 Electric Motors
	5.2.2 Electric Drives
	5.2.3 Example Industrial Setting
	5.2.4 Baseline Drive Architecture
	5.2.5 Requirements and KPIs

	5.3 Fog-based Electric Drives
	5.3.1 FORA FCP Reference Architecture
	5.3.2 Fogified Drive Architecture

	5.4 Evaluation
	5.4.1 UC Description
	5.4.2 Assessing the KPIs

	5.5 Related work
	5.6 Conclusions

	Bibliography

