
Electric Drives as Fog Nodes in a Fog
Computing-based Industrial Use Case

Mohammadreza Barzegaran1, Nitin Desai2, Jia Qian1, and Paul Pop1

1DTU Compute, Technical University of Denmark, Kongens Lyngby, Denmark
2School of Innovation, Design and Engineering, Mälardalen University, Västerås, Sweden

Abstract—Electric drives, which are a main component in
industrial applications, control electric motors and record vital
information about their respective industrial processes. The de-
velopment of electric drives as Fog nodes within a fog computing
platform (FCP) leads to new abilities such as programmability,
analytics, and connectivity, increasing their value. In this study,
we use the FORA FCP reference architecture to implement
electric drives as Fog nodes, which we call “fogification”. We
designed our fogified drive architecture and its components
using Architecture Analysis and Design Language (AADL). The
design process was driven by the high-level requirements that
we elicited. We used both the fogified drive architecture and
the current drive architecture to implement a self baggage drop
system in which electric drives are the key components. We then
evaluated the fog-based design using several key performance
indicators (KPIs), which reveal its advantages over the current
drive architecture. The evaluation results show that safety-related
isolation is enabled with only 9% overhead on the total Fog node
utilization, control applications are virtualized with zero input-
output jitter, the hardware cost is reduced by 44%, and machine
learning at the edge is performed without interrupting the main
drive functionalities and with an average 85% accuracy. The
conclusion is that the fog-based design can successfully implement
the required electric drive functionalities and can also enable
innovative uses needed for realizing the vision of Industry 4.0.

I. INTRODUCTION

Industry 4.0 is an industrial revolution via digitalization
that affects all industries and sectors. Digitization increases
productivity, flexibility, and product quality. Moreover, it re-
duces time-to-market and supports mass-customization [1].
When machines become connected with each other, sensors,
and actuators, they form the Industrial IoT (IIoT), which is
expected to increase the global gross domestic product (GDP)
value to USD 15 trillion by 2030 [2].

The convergence of Operational Technology (OT) and Infor-
mation Technology (IT) drives this digital transformation [3].
However, OT and IT use different computation and commu-
nication technologies [3]. OT employs dedicated hardware
and software to implement real-time and safety-critical appli-
cations that have stringent timing and dependability require-
ments. OT uses proprietary technologies, imposes information
flow restrictions, and hence does not support the vision of
Industry 4.0 [3]. IT uses cloud computing, artificial intelli-
gence (AI), and big data to bring flexibility, scalability, reduced
costs and faster development. However, IT is not suitable for
industrial applications where non-functional properties related
to timeliness and dependability must be guaranteed [4].

Because Industry 4.0 will only become a reality through
the convergence of OT and IT [3], a new paradigm called
fog computing has been envisioned as an architectural means
to realizing the OT/IT convergence [5]. Fog computing is
a “system-level architecture that distributes resources and
services of computing, storage, control and networking any-
where along the continuum from Cloud to Things” [6]. A
fog computing platform (FCP) brings computation and storage
resources closer to the edge of the network. An FCP is
composed of several interconnected fog nodes (FNs), as shown
in Fig. 1. Several types of FNs from powerful high-end FNs
to low-end FNs with limited resources have been proposed by
researchers [7], [8] and have been developed by companies [9],
[10].

This study addresses industrial application areas in which
electric drives [11] are present. Electric drives control electric
motors and are ubiquitous in industrial installations in many
domains such as the automotive, food and beverage, marine
and offshore, hydraulics, refrigeration, and air conditioning
domains. In this paper, we propose a method for converting
existing IIoT architectures to fog computing-based implemen-
tations, aiming at realizing the vision of Industry 4.0. We
show how electric drives can be thus turned into FNs within a
fog computing architecture (we call this process fogification).
Extending electric drives (which are naturally at the edge
of the network, near the machines, sensors, actuators, and
industrial data sources) with fog computing capabilities will
guarantee effective collaboration among the devices, nodes,
and Cloud [12].

By developing the electric drives as FNs, new features,
such as programmability, analytics, and connectivity with
customer clouds, are expected to increase their value [13].
Their increased functionality allows drives to assume a more
significant role in industrial and domestic control systems by
leveraging their ability to instrument as the data source, which
can help bootstrap the data economy. The main direct business
benefit comes from the ability to also instrument legacy
systems using drives as the data source. Because electric
drives run real-time software to control the speed, torque,
and position of electrical motors that operate cooperatively
with other devices to automate machinery, they produce data
that carries vital information about the machinery they control.
These data compromise a critical asset that is massive, often
repetitive, and often must remain on-premises for privacy

1

Fig. 1. An FCP consists of FNs (boxes) from high-end to low-end that are
placed at the edge of the network and connected via a Deterministic Ethernet
(thick lines) with each other, equipment, and the Cloud. Mixed-criticality
applications are running on FNs and in the Cloud.

reasons. Hence, there is a need for drives to be capable of
data analytics locally, at the edge, which cannot be realized
with the current drive architecture.

Edge analytics will facilitate network off-loading and extend
the Internet of Things (IoT) solution market. Digital services
allow efficient service provisioning, improved uptime, and
decreased overall costs. Correctly configured products and
processes decrease energy consumption and improve quality.
Open data ecosystems support innovations and new value-
added services and will create long-term benefits for all
ecosystem participants.

A. Related work

Several research projects have addressed mixed-criticality
applications that share multicore-based distributed architec-
tures. The aims of the EMC2 European Project1 are to provide
efficient handling of mixed-criticality applications under real-
time conditions, scalability and maximum flexibility, and full-
scale deployment and management of integrated tool chains,
throughout the entire life cycle. Research on FCP architectures
has made progress in recent years [8], [14]. For example, the
European projects FORA [15] and mF2C2 focus on creating
open-source, standards-compliant fog platforms using COTS
hardware to execute hard real-time industrial control appli-
cations such as the electric drives discussed in this paper.
Companies such as TTTech Computertechnik AG [9] and
Nebbiolo Technologies Inc. [10] are pioneers in the field of
commercializing the fog computing paradigm with market-
ready products for industrial automation. Although design
paradigms for the fog are still in their early stages, there
are certain generic guidelines that are followed to ensure the
isolation of tasks of varying criticality. In [16], the authors

1www.artemis-emc2.eu
2https://www.mf2c-project.eu

describe an execution framework in which applications are
isolated temporally on many-core processors.

Safety certification as proof of guarantees for the proper
execution of safety functions is needed for the FCP. Classical
safety controller designs such as the simplex architecture
[17], [18] provide a switching mechanism between a high-
performance but non-safety certified controller and a simple
certified controller for safety functions. However, for complex
systems such as the FCP, the simplex design is nonoptimal
because of its switching latencies. Selicean et al. [19] proposed
a method in which different safety-integrity levels (SILs) are
assigned to the applications. In this method, applications with
the same SIL are mapped to a single partition. Virtualization
of control applications can then be realized by separating
and scheduling the control tasks inside the partitions, similar
to [20]. The modification of hypervisors provides different
degrees of separation. Modification of the Xen hypervisor [21]
to guarantee timing constraints was proposed by Masrur et
al. [22]. The authors modified the hypervisor with a new
scheduler based on a fixed-priority policy and a control loop
to control the timing constraints of virtual machines. [23]
addressed safety critical applications running in the fog and
how the FCP must cater to these specific requirements.

One major research theme is resource management in the
fog. In [24], the authors identified and classified the archi-
tectures, infrastructure, and underlying algorithms for man-
aging resources in fog/edge computing. The authors of [25]
proposed a list scheduling-based heuristics to solve this prob-
lem. The authors demonstrated the feasibility of reconfiguring
the scheduled network at runtime for industrial applications
within the fog. Reference [26] introduced a vulnerability-
based method to quantify the security performance of commu-
nications on distributed systems. Fault-tolerant aspects were
discussed in [27], where the design problem is to minimize the
schedule length and security vulnerability of the application,
subject to given fault-tolerant constraints. A multi-objective
optimization method was then proposed to find the best
solutions. Reference [28] discussed potentially contradicting
design constraints: real-time capability versus scalability. This
paper suggested a design methodology and architecture as a
step toward perfectly scalable real-time systems, i.e., systems
with deterministic timing behavior and run-time reconfigura-
tion.

Researchers have also addressed issues with connectivity in
the fog. Reference [29] addresses the challenges and issues
with IEEE 802.11 MAC protocols that exchange critical mes-
sages used in industry. Barzegaran et al. in [30] proposed a
constraint programming-based solution to configure commu-
nication for critical control applications running in the fog
nodes. In [31] researchers proposed a solution that can be
used to reduce communication costs. The solution splits the
communication-related computation between fog nodes and
the Cloud to avoid sending all raw data to the Cloud. Such
solutions show their advantages in applications where fog
nodes collect data and the FCP runs machine learning (ML).

Several approaches have been proposed for security threats

2

in an FCP. Chaudhary et al. in [32] proposed an approach
for finding XSS attacks in an IoT network. The approach
uses Convolution Neural Network (CNN) that perform data
preparation methods on the attack payload to detect the
security threat. In [33] the authors proposed an authentication
method for Time-Sensitive Networks (TSN) that exchanges
key for secure data exchange. In [34] researchers proposed
an authentication method that uses signature from sender and
public/private keys for decryption. The method also considers
generating optimal routing for secure transmission of mes-
sages.

Cyber-Physical Systems (CPS) in industrial infrastructures
also deal with the combination of mechatronics, communica-
tion, and information technologies to control distributed phys-
ical processes and systems. They are designed as a network of
interacting software and hardware devices and systems, many
of them with a higher level of decision-making capability
in two respects: autonomic with self-decision processes and
collaborative with negotiation-based decision processes. Using
CPS as emerging components in Industry 4.0 has been ad-
dressed by researchers such as [35]. Recently, several projects
have focused on flexible architectures for Industry 4.0-driven
CPSs as well as distributed control systems (DCS). A common
design goal for various reference architectures for Industry 4.0
is to introduce dynamic and flexible interaction among compo-
nents [36]. One of these initiatives is the German Industry 4.0
initiative, which specifies the Reference Architecture Model
Industry 4.0 (RAMI 4.0) [DIN SPEC 91345].

Three such architectural approaches are proposed by the
PERFoRM, IMPROVE, and BaSys 4.0 projects. Production
harmonizEd Reconfguration of Flexible Robots and Machinery
(PERFoRM) focuses on increasing flexibility and configura-
bility in manufacturing. The primary goal is to transform
existing systems into flexible and reconfigurable systems by
providing an architecture with a common infrastructure for
different industries.3 The aim of the Innovative Modeling
approaches for Production systems tO Raise Validatable Ef-
ficiency (IMPROVE) project is to develop a decision support
system for tasks such as diagnosis and optimization. This is
realized by the creation of a virtual factory that serves as a
basis for model development and validation. Therefore, data
from several systems in the plant need to be aggregated and
integrated.4 BaSys 4.0 stands for Basic System Industry 4.0,
and it abstracts the overall production process and allows
optimization prior to making the actual changes in the sys-
tem. In addition, this system architecture provides real-time
capabilities for critical process control functions [37].

As mentioned, fog computing is envisioned as an architec-
tural means for realizing the vision of Industry 4.0 [6], [7],
[38]. However, very few works investigate the application of
fog computing to the industrial systems. The OpenFog refer-
ence architecture from [6] has been used to design an Airport
Visual Security use case. Although the authors show how a fog

3http://www.horizon2020-perform.eu
4http://www.improve-vfof.eu

reference architecture can be used for the use case, they do not
evaluate their design, which is only presented conceptually.
A fog computing architecture has also been investigated in
an industrial robotics use case [39], which has identified the
main challenges and potential solutions when moving to a
fog-based architecture. However, the authors do not use a
systematic architectural approach, nor evaluate the proposed
solutions. An initial limited investigation on extending electric
drives with fog computing capabilities was carried out in [40].
However, the use case was relatively small, and the evaluation
limited. The main novelty of the work in [40] is the use a semi-
formal notation for the proposed design, i.e., the architecture
analysis & design language (AADL), which is an architecture
description language from the domain of real-time embedded
systems [41]. AADL has been standardized by the Society
of Automotive Engineers (SAE) and employs a component-
oriented approach for modeling systems using both textual
syntax and graphical notation with precise semantics [41].
AADL is supported by several tools for graphical modeling
and analysis of embedded systems such as OSATE [42], which
is an open-source Eclipse-based framework consisting of a
modeling environment and a set of plug-ins for validating and
analyzing models.

B. Contributions

This paper proposes a method for updating existing In-
dustrial IoT architectures to fog computing-based implemen-
tations, aiming at realizing the vision of Industry 4.0. The
method applies the recently proposed FORA FCP reference
architecture [15] and uses AADL to formally capture the
design of the architecture. The method is evaluated against
several key performance indicators (KPIs) on a realistic self
baggage drop system that is using electric drives to control the
conveyor belts. The contributions of this paper are as follows:

• We propose a new design for electric drives as FNs using
the FORA FCP reference architecture from [15]. In this
design, electric drives are developed as FNs that deliver
the main drive functionality and provide the benefits
envisioned in Industry 4.0.

• We model the fogified drive architecture using AADL,
capturing the design and the interactions between the
architecture’s components. We extend the AADL lan-
guage annexes to realize a fog-based design, e.g., the
ARINC653 AADL annex [43], which defines virtual
processors and virtual buses.

• We identify the fog-based drive requirements for driving
the design process, to ensure the implementation of drive
functionality and to realize the vision of virtualizing the
control functions on a fog-based industrial architecture.

• We apply our method to implement a fog-based ar-
chitecture for a realistic use case consisting of a self
baggage drop system that uses electric motors to drive
its conveyor belts. We propose several KPIs, which are
used to evaluate the fog-based solution.

• Using the proposed KPIs, we compare two implementa-
tions of the use case, one using the traditional design

3

Fig. 2. Automation pyramid: the multiple levels of an industrial automation
enterprise have hierarchies. The two bottom levels use OT, and the two top
levels use IT.

versus the proposed fog-based design. The evaluation
shows that our method is capable of deriving a fog-based
architecture for the use case, which improves several
aspects over the traditional architecture, e.g., related to
safety, control performance, data analytics, security and
hardware cost.

The remainder of this paper is structured as follows. We
introduce electric motors, drives, the current architecture of
drives, and the drive requirements in Section II. We proposed
our fogified drive architecture and its AADL model in Sec-
tion III. Section IV evaluates the fog-based solution for our
use case. We highlight the related work in Section I-A and
conclude the paper in Section V.

II. ELECTRIC MOTORS AND DRIVES

We introduce electric motors and electric drives in Sec-
tion II-A and Section II-B, respectively, and describe an
industrial setting in which motors and drives are used in
Section II-C. We present the current drive architecture and
its AADL model in Section II-D. Section II-E presents the
drive requirements and KPIs.

A. Electric Motors

Electric motors are one of the main components in industrial
settings in which machines are used for automation. As men-
tioned, they are used in many application areas, from building
automation, energy systems, and industrial automation, mobile
hydraulics.

An electric motor is an electromechanical machine that con-
verts electricity into mechanical energy. The electric current is
fed to the motor using a wire winding. This winding interacts
with the motor’s magnetic field, which applies torque to the
motor shaft. Several classifications of electric motors have
been introduced. For example, a well-known classification is
based on the type of power source, direct current (DC) or
alternating current (AC). Other classifications consider the
internals of the electric motors or output motion [44].

Electric motors can generate continuous rotation and are
widely used in various areas, ranging from electric watches

Fig. 3. Basic block diagram of an electric drive: The source power and the
input command are the inputs, and the sink power is the output.

to ship propulsion. In an industrial setting in which electric
motors are operating, a specific rotation scenario is assumed.
For example, an electric motor is needed to generate a fixed
speed rotation, e.g., 50 revolutions per minute (rpm) for 10
s, starting at a given time. The rotation may also have a
specific speed, torque, and position, which can be controlled
by altering the electric current, e.g., the voltage, amperage,
and frequency (in AC).

B. Electric Drives

Electric drives, alternatively called drives, are used to alter
the electric current’s characteristics such as the frequency
and voltage to control the motor’s rotation for a required
outcome, i.e., the desired speed, torque, and position [11].
Drives are designed to be general purposes, e.g., to control
motors within a certain power range, or for specific purposes,
e.g., to control an electric motor with specific requirements.
An example of a specific purpose is the control of a centrifuge
machine’s motor for spinning very dense fluid, which needs
very precise control. Because using drives along with electric
motors is necessary in industrial settings and products, the
market for drives is huge, and it is predicted that it will grow
by USD 5.11 billion between 2019 and 2023 [45]. Electric
drives are a natural entry point for novel technologies that
will bring significant business benefits, considering their role
in the industry and their market value.

Figure 2 shows the so-called “automation pyramid” [46],
which captures the multiple levels of an industrial automa-
tion enterprise. The “machine level” consists of sensors and
actuators, including electric motors, which are placed in the
field or on the production floor. In contrast, the “control level”
consists of industrial controllers such as industrial personal
computer (IPC) and programmable logic controllers (PLCs),
which control and manipulate the devices in the field. The
controllers obtain their inputs from the machine level, e.g.,
sensors, switches, and human–machine interfaces (HMIs), run
a control algorithm to determine the desired outputs, and return
the outputs to the actuator devices in the field. Although drives
implement controllers to control the rotation of electric motors,

4

Fig. 4. A typical conveyor belt: belts are rotating around pulleys (the red
box) using an electric motor that is controlled via an electric drive.

they physically reside on the machine level and are classified
as secondary control devices.

Drives are embedded cyber-physical systems that must meet
real-time responses and reliability guarantees in order to meet
the high dependability requirements of the application areas in
which they are used. They run real-time applications and have
access to detailed information about the electric motors they
control and the industrial processes that are implemented.

The basic block diagram of a drive is given in Fig. 3,
where the source power and command are the inputs, and
the sink power is the output. The drive has two internal units:
(i) a power modulator unit and (ii) a control unit. The power
modulator unit modulates the source power of the modulating
signal and returns the sink power. The modulating signal is
generated by the control unit, which performs a resource-
intensive computation based on the input command and sensed
value of the sink power. The control unit may have safety
features embedded such as a motor brake.

C. Example Industrial Setting

We provide an example industrial setting in Fig. 4, where an
electric motor is used to control the conveyor belt speed. The
conveyor belt machine is a carrying medium that uses belts
rotating about two or more pulleys (the red box in the figure).
The conveyor belt needs to move the load it carries with a
specific speed profile determined by an industrial controller
residing at the control level (Fig. 2), a PLC or an IPC.

Figure 5 shows a typical implementation consisting of a
PLC, a sensor, a drive, and an electric motor. The sensor
reads the load position and sends the data to the PLC, which
determines the electric motor’s current speed. The PLC sends
the desired speed value to the drive. The drive controls the
speed of the electric motor so that it is the desired value at
the right time.

D. Baseline Drive Architecture

We first discuss a typical generic non-fog drive implementa-
tion [47]–[50], which we refer to as the “baseline architecture”.
We illustrate its design using AADL, as shown in Fig. 6a.

The drive takes as inputs (i) the source power, which is
the main AC power line, and (ii) the command via a fieldbus
interface that connects to a PLC, and outputs a sink power that
operates an electric motor. The HMI is used as both the input
and an output. As shown in Fig. 6a, the architecture consists
of four components: operation component, communication
component, control component, and power component. Each
component uses dedicated hardware and software and has
access to a shared bus, enabling it to be physically separated.
Input-wise, all components are powered by the source power,
but only the communication component has access to the input
command. Output-wise, the power component returns the sink
power, and the operation component has access to the HMI.

The operation component determines the operation mode
of the drive. Figure 6b depicts the hardware, which has a
CPU, RAM, and storage, and the software, which consists of
real-time applications (Apps) that are running on a real-time
operating system (OS). The operation component connects to
the other components via the shared bus (Fig. 6a).

The applications running in the operation components (also
shown in Fig. 6b) are as follows: (1) the mode control appli-
cation (ModeControlApp), which engages and disengages the
motor controller; (2) the management application (Managmen-
tApp), which configures the communication and controller pa-
rameters; and (3) the monitoring application (MonitoringApp),
which implements safety functions. The ModeControlApp
starts and stops the operation of the electric motor by en-
gaging or disengaging the motor controller component based
on the HMI or command inputs via the fieldBus interface.
The ManagementApp sets the drive parameters such as the
communication parameters via the HMI and motor control
configurations such as the desired output (which is received
from the communication component) via the shared bus. The
MonitoringApp monitors the drive operation and engages
safety functions when necessary.

The communication component, as shown in Fig. 6c, con-
sists of the common hardware equipped with communication
resources (the Switch box) to connect via the fieldBus interface
with the ProfiNet/RT [52] standard. The component’s software
consists of a real-time application (CommunicationApp) that
handles the network protocol and is running on a real-time

Fig. 5. Typical implementation of a conveyor belt system: The PLC uses the
part present sensor to detect loads and send command to electric drive. Once
the electric drive receives a run command, controls the electric motor.

5

(a) Overview of the baseline architecture: Communication, Operation and
Control components are connected via a shared bus. The control component
uses Power module to control an electric drive.

(b) Operation component runs different applications on the shared hardware.

(c) Communication component runs the communication application on the
real-time operating system.

(d) Motor control component generates the control signal for the power
module to drive an electric motor.

Fig. 6. AADL diagrams of the baseline architecture: each component has dedicated hardware and software.

OS. The drive communicates with a PLC as the preliminary
controller via a feildBus interface to obtain the desired motor
output.

The control component is shown in Fig. 6d and consists of
the hardware introduced earlier and software that implements
a feedback control application (ControlApp) running on a real-
time OS. The feedback control application is implemented
according to the IEC 61131-3 standard [53] function blocks.
Once the application is engaged by the input from the opera-
tion component via the shared bus, it outputs a signal to the
power component via the I/O interface. The signal is generated
based on the configuration received via the shared bus from
the operation component and the feedback received from the
power component via the I/O interface.

The power component, as depicted in Fig. 6a, takes the
source power and the signal from the I/O interface as inputs
and outputs the sink power, which operates the electric motor.
This component is a power modulator that modulates the
power line to the desired input reference. It also returns the
current sink power setting via an I/O interface. The control
component uses a feedback signal to control the sink power
that operates the drive.

E. Requirements and KPIs

We elicited system-level requirements for designing a fogi-
fied drive architecture considering the vision of Industry 4.0.
Table I lists the requirements and relevant rationale. The
requirements specify that the fog-based drives should both
have fog computing capabilities (for example, the ability to

6

TABLE I
SYSTEM-LEVEL REQUIREMENTS FOR FOG-BASED DRIVES

Requirement Rationale Realization in the fog-based
architecture (Section III-B)

1 Drives shall be designed according to
industrial standards.

To ensure drive compatibility with the industrial environment IEC61800-based

2 Drives shall host mixed-criticality appli-
cations.

To virtualize critical and control applications and run IIoT applications
envisioned in Industry 4.0

Virtualization and separation
mechanisms

3 Drives shall perform accurate motor
control.

To enable the virtualization of control applications to meet their non-
functional properties (control performance)

Configuration to provide good
control performance (20 ms re-
sponse time)

4 Drives shall be configurable. To enable the allocation of the necessary resources to mixed-criticality
applications and to ensure portability and deployment of applications

Implemented via middleware

5 Drives shall have fault tolerant commu-
nication.

To ensure the connectivity and responsiveness of the drive Via IEEE 802.1 TSN configu-
ration [51]

6 Drives shall have a time-constrained
communication interface.

To guarantee communication with bounded latency for critical appli-
cations exchanging messages

IEEE 802.1 TSN solution

7 Drives shall have Cloud access. To enable deployment and communication for IIoT applications Via Ethernet

8 Drives shall perform data analytics. To avoid sending all data to the Cloud and to optimize resource
management

Machine learning solutions

9 Drives shall enforce security policies. To avoid malicious activity and define permissible user actions Policies enforced via middle-
ware

10 Drives shall be fault-tolerant. To ensure fault-tolerant and high-integrity operation of safety-related
applications

Fault detection, isolation, and
recovery mechanisms

perform data analytics) and still deliver safety-related drive
functions (for example, accurate motor control).

We have also defined several key performance indicators
(KPIs) that, should be used to evaluate the solutions imple-
mented using the fog-based drive architecture. Table II shows
the KPIs and the relevant motivation.

III. FOG-BASED ELECTRIC DRIVES

In this section, we briefly present the FORA fog computing
platform (FCP) in Section III-A, which was used to design
our fogified drive architecture. We describe the proposed drive
architecture and its AADL model in Section III-B.

A. FORA FCP Reference Architecture

The FORA FCP reference architecture was introduced
in [15] to bring the fog computing paradigm to IIoT applica-
tions. The FCP consists of FNs connected to each other and to
the machines through a deterministic communication solution,
namely, IEEE 802.1 TSN [51] (Fig. 1). The aim of TSN is to
provide timing guarantees for demanding applications such as
critical applications. Although TSN is currently investigated
in wireless networks (802.11ax/Wi-Fi 6 and 5G), we consider
wired TSN in this work. The investigation of emerging 6G
communication technologies in the context of Industrial IoT
is an orthogonal issue to our work [55], [56].

It also guarantees bounded communication latency between
nodes in the FCP. The key components of the FORA FCP
are (1) deterministic virtualization, (2) middleware, and (3)
mechanisms for resource management and orchestration [15].

Because the FCP hosts mixed-criticality applications with
differing requirements, an isolation mechanism is required to

prevent low-criticality applications from interfering with high-
criticality applications. In the FORA FCP, each FN utilizes a
hypervisor that provides spatial and temporal isolation among
the mixed-critically applications.

The FORA FCP uses middleware to support the imple-
mentation of distributed critical applications and non-critical
applications such as IIoT applications that implement data
analytics, updates, and regular checks. It also offers services
for dependability, such as resource monitoring, safety and
security monitoring, and machine learning services.

The FORA FCP employs resource management techniques
for supply and demand alignment in an FCP and support
configuration for optimizing resource utilization. With the
resource management mechanisms, the available resources of
each FN and the fog landscape are monitored at runtime, and
services for the placement, deployment, and support of future
applications and dynamic applications that may migrate across
the FNs of the FCP are provided.

These services enable real-time decision making, security
services, and resource prioritization. More information on the
FORA FCP middleware is presented in [15].

Resource management techniques align resource supply
and demand in an FCP and support FCP configuration for
optimizing resource utilization. With the resource management
mechanisms, the available resource of each FN and the fog
landscape is monitored at runtime, which allows the place-
ment, deployment, and support of IIoT applications. More
information on the resource management mechanisms for the
FORA FCP is presented in [15].

7

TABLE II
KPIS

Criteria Motivation
1 Safety Safety-critical industrial applications should be able to be hosted with no interference from less- criticality

applications.

2 Security Platform-level security services will be provided and the threat of successful attacks would be reduced.

3 Virtualized critical con-
trol performance

Using the configuration mechanisms, the FN should be able to configure its resources and the TSN switches
according to the operational needs of the virtual control tasks such that the control performance can be
guaranteed.

4 Hardware costs Hardware spending should be reduced because the platform enables virtualization that converges various
functions into one FN.

5 Data analytics The FNs will implement the OPC unified architecture [54] and connect directly to the equipment, sensors,
and actuators. The data can then be analyzed locally using analytics applications at the edge. A subset of
production data is then transferred securely to the Cloud for big data analytics.

B. Fogified Drive Architecture

This section describes our proposed fogified drive architec-
ture, which is based on the FORA FCP [15]. We assume that
using our proposed fogified architecture, drives are developed
as FNs that are connected to each other and to the machines
through TSN [51]. The fogified drives implement both the
typical drive functionality (from the baseline architecture) and
extra functionalities, as envisioned in the FORA FCP in an
FN. We provide an overview of such a drive developed as
an FN and modeled using AADL in Fig. 7a. The architecture
consists of a hardware component, a software component, and
a power modulator unit for operating electric motors. The
fogified drive takes as inputs (1) the source power and (2)
the network connection via the TSN interface. It outputs the
sink power and uses the network connection to send data.

The hardware component is depicted in Fig. 7b, which
is equipped with a commercial of-the-shelf (COTS) multicore
processor (CPU), RAM module, storage resources, an analog
to digital converter module (A2D), and a network switch
(TSNCard) for TSN capabilities. These resources are shared
for running applications that sit on the software component.
Similar to [15], we consider a fog-based design that uses
TSN because it supports mixed-criticality bounded-latency
communication via multiple traffic types. For the scheduled
traffic, which requires synchronized schedule tables, TSN em-
ploys a network-wide clock synchronization protocol, namely,
IEEE 802.1AS [57] with sub-microsecond precision. The FN
utilizes its advanced networking capabilities to interact with
the environment, including sensors, actuators, other FNs, and
remote Cloud facilities.

An example of a COTS multicore processor is the Intel
Atom processor, which implements hardware virtualization
extensions, such as Intel’s VT-x and VT-d, second level
address translation (SLAT), and single-root I/O virtualization
(SR-IOV) [58]. Hardware virtualization extensions allow the
hypervisor to host virtual machines with dedicated operating
systems.

The software component has a software stack that con-
sists of a hypervisor, middleware, partitions with dedicated

operating systems, and an application layer, as shown in
Fig. 7c. As mentioned in [15], the software stack can take
advantage of existing open-source software stacks for the edge,
e.g., OpenStack [59]. The middleware can use application
layer protocols such as MQTT-SN [60] or CoAP [61] for
higher-level component communication and TSN and OPC UA
for lower-level component communication. Mixed-criticality
applications that share the same hardware resources are sepa-
rated into different virtual machines (partitions) enforced using
hardware-supported virtualization [62] based on hypervisors
such as PikeOS [63], ACRN [64], or Xen [21].

A hypervisor partitions its resources, such as processor cores
and time, main memory, and I/O devices, to achieve strict
temporal and spatial isolation of applications with mixed crit-
icalities. The internals of our proposed hypervisor component
are depicted in Fig. 7e, where we assume PikeOS [63] is used
as the hypervisor. PikeOS can also make use of static partition
schedules decided at design time to enforce temporal isolation.
A static partition schedule consists of several partition slices
where the partition is running based on a partition table that
captures the start and end of partition slices (see [20] for more
information on partitions and partition slices).

The fogified drives can run all the drive applications from
the baseline architecture, all of which are critical and modeled
as periodic hard real-time tasks and messages [65]. They can
also run IoT applications that are non-critical, may migrate in
and out of the drives, and implement tasks such as data analyt-
ics. Each IoT application was also implemented as tasks and
messages. Our model assumes three types of applications—
control, communication, and operation—which are assigned to
separate partitions. The model for each partition is illustrated
in Fig. 7d, where an OS runs the applications on the applica-
tion layer. The OS runs the applications and uses the AppSer-
vices and AppSupport for using shared resources and assuring
dependability. The control partition has a soft-PLC OS, and
the control application was implemented using the IEC 61131-
3 standard [53] function blocks. We also define a Quality-
of-Control (QoC) for control applications that captures the
control performance; see [66] for more information about
the QoC. The communication partition has a real-time OS

8

(a) Overview of a fogified drive: the power module
drives an electric motor.

(b) Hardware platform. (c) Software platform consists of several partitions
managed by a hypervisor.

(d) A partition has an operating system that runs different applications. (e) Hypervisor isolates the mixed-criticality applications using partitions.

Fig. 7. AADL diagram of the fogified architecture: mixed-criticality applications run on shared hardware.

that runs applications for controlling network traffic, applying
security mechanisms, handling application traffic, and deciding
the TSN message schedule tables, called Gate Control Lists
(GCLs). We assume that the operation partition has an OS
to run different types of applications, including a machine
learning application.

The power modulator unit, as depicted in Fig. 7a oper-
ates the same way as the power component in the baseline
architecture. It takes the source power and the signal from
the I/O interface as inputs and outputs the sink power, which
operates the electric motor. The I/O interface is connected to
the hardware platform where an analog to digital converter is
accessible to control the partition that uses the I/O signal to
operate the electric motors.

IV. EVALUATION

In this section, we first provide the details of the use case
(UC), which we used for evaluation in Section IV-A. We
evaluate the UC in Section IV-B on several aspects using the
KPIs in Table II, discussing the suitability of the fog-based
drive design for industrial applications.

A. UC Description

We used the proposed fogified drive to model a self baggage
drop system. A self baggage drop system is a well-known and
widely used machine in airports to automatically collect and
distribute passenger baggage (Fig. 8). The machine is realized
with several conveyor belts (see [40] for details of a conveyor
belt), and it collects baggage from passengers and delivers

9

Fig. 8. Self baggage drop system in Brisbane airport: baggage is collected
and carried to determined destinations using several conveyor belts.

the baggage to special vehicles (that carry the baggage to an
airplane according to the destination). In this UC, we consider
a typical machine, as depicted in Fig. 8, which is fed with
baggage from every input location, weighs the baggage, reads
the tag of the received baggage, and determines the destination
of the baggage according to the tag by accessing a database.
It then conveys the baggage toward the destination from one
of the output locations, and then reports the machine usage
and baggage delivery to the costumer’s cloud.

Figure 9 shows a schematic of the machine. As depicted in
the figure, the machine has four input conveyor belts (green),
one main distribution conveyor belt (yellow), two actuators
(blue) that push baggage, and two output conveyor belts (red).
Each input conveyor belt has an electric motor that drives a
belt, two part-present sensors that sense the presence of a load,
a tag reader for reading baggage tags, and a weight sensor
for weighing the load. The main distribution conveyor belt
has two electric motors for driving the belt and two actuators
for pushing the loads. Each output conveyor belt also has an

TABLE III
SUMMARY OF THE UC HARDWARE EQUIPMENT

Equipment Unit No. of units No. of units
Name Price in the fogified in the baseline

(USD) Architecture Architecture
Part present
sensor

100 12 12

Electric motor 200 8 8

Tag reader 50 4 4

Weight sensor 50 4 4

Push actuator 100 2 2

Belt 50 7 7

PLC 500 0 6

IPC 1,000 0 1

Switch 100 3 2

Fogified drive 1,000 2 0

Electric drive 350 0 8

electric motor and two part-present sensors.
We consider two different implementations for the UC:

(1) a baseline architecture and (2) our proposed fogified
architecture. We also modeled the fogified implementation of
the UC with AADL and show its diagram in Fig. 10. Table III
summarizes the hardware equipment costs and number of units
used in the two implementations of the UC.

Drives in the fogified architecture cover the functionality
of the baseline drives and can run all drive applications from
the baseline architecture. We show example UC applications
running on FN N1 in Table V, which shows the applications
and relevant mapping of these applications to the processing
elements of the baseline architecture.

B. Assessing the KPIs

In this section, we address each KPI separately and consider
it as an evaluation criterion, using the evaluation method
mentioned in Table. IV to evaluate it on the UC. The results
of the evaluation are as follows.

Safety: As mentioned, the FNs in the UC host mixed-
criticality applications. High-criticality applications should be
protected from low-criticality applications. This is achieved
by spatial and temporal separation mechanisms implemented
via the hypervisor. Consider the UC applications mapped to
FN N1 in Table V, where column 1 shows the criticality of
the application, ranging from 3 for the highest criticality to 0
for the lowest criticality.

The baseline architecture employs spatial separation that
uses dedicated processing elements, i.e., drives, PLCs, and
IPCs, to isolate applications of different criticalities. For
example, high-criticality applications are assigned to run on
PLCs, which guarantee deterministic execution, and the less-
critical applications are assigned to be run on IPCs. Column 7
in Table V shows the mapping of the applications to processing
elements.

The same level of separation should be achieved in the
fog-based solution. Hence, the fogified architecture uses a
hypervisor and dependable middleware to achieve spatial parti-
tioning. The hypervisor provides deterministic access to shared
resources (spatial partitioning) and the temporal isolation of
mixed-criticality applications via a static configuration table.

TABLE IV
EVALUATION METHODS OF KPIS

Criterion Evaluation
#1 Provision of isolation via partitioning and evaluation of the

applied overhead

#2 Protection of high-criticality applications and provision of
authentication mechanisms for communication

#3 Optimization of the control performance for control applica-
tions

#4 Comparison of the hardware cost of a UC implementation
using the baseline architecture and the fogified architecture

#5 Provision of a decentralized machine learning solution

10

Fig. 9. UC Schematics: The green belts are inputs, and the red belts represent the output. The round yellow belt is the main distribution belt. There are
eight electric motors (M), 12 part present sensors (p), and four tag reader sensors (tr). The small black boxes represent the baggage. Network switches are
indicated by SW in both the FCP and baseline architectures, whereas N denotes a fogified drive in the FCP architecture and C denotes a PLC in the baseline
architecture. The baseline architecture has an IPC.

The configuration of spatial and temporal isolation can be
achieved using approaches such as the one proposed in [20],
which relies on a heuristic algorithm for determining parti-
tions and assigning tasks to the partitions. In the proposed
approach, each partition is dedicated to a criticality level and
consists of a set of partition slices. The start and end of each
partition slice is captured in partition tables that are determined
statically. The fogified architecture implements the proposed
approach in the node configuration component (Fig. 7e). The
configuration generates an optimized partition table for each
FN, the mapping of applications to partitions based on their
criticality levels, and the schedule tables for the critical tasks.

The advantage of virtualization and partitioning is that it
reduces hardware costs, i.e., more equipment and mixed-
criticality functionality can be hosted as software tasks on
the FNs. However, we were interested in determining whether
we could achieve a level of performance equal to that of the
baseline architecture, that is, whether the virtualization would
introduce much overhead. We evaluate this via a performance
index defined as the number of processing element types and
the overhead introduced by the separation mechanisms. The

proposed approach in [20] considers the partition overhead in
the partition tables. As shown in Table V, the applications are
mapped to the FN N1 in the fogified architecture, whereas on
the baseline architecture, the processing elements are drives,
PLCs, IPCs, and the Cloud; this result demonstrates that the
performance on the fogified architecture is increased.

We evaluated the performance of our solution employed on
the fogified architecture. As shown in Table V, the example ap-
plications running on FN N1 are separated using the proposed
solution via partitioning. Our solution successfully determined
the partitions and partition slices where the applications imple-
mented as tasks are running. Moreover, it generated partition
schedules that capture the start and end of partition slices.

The applications in Table V are implemented as tasks, and
column 8 shows the utilization of each task when implemented
on its respective core, i.e., the fraction of the 100% core
utilization. Column 9 in the table shows the total utilization for
each application without considering the overhead introduced
by the partitioning-based virtualization; note that because
the processors are dual-core, the total capacity of the two
cores is 200%. Column 10 shows the total utilization when
virtualization is used, accounting for the overheads. Three

11

Fig. 10. UC AADL model: part present sensors (P), tag reader sensors (tr), and actuators (A) are connected to fogified drives (N) via network switches
(SW). The fogified drives (N) are connected to motors (M) to control them.

partitions were generated, and the core utilization of each
partition increased by an average of 9% compared with the
total utilization of applications without partitioning. In other
words, the results show that to enable the safety-related sepa-
ration of mixed-criticality applications, our proposed solution
introduces only a 9% overhead on the total FN utilization.

Security: Security mechanisms are required to adequately
protect the system against adversaries. A compromised system
may allow the safety requirements to be violated. We briefly
discuss security solutions that can be used in the UC’s fogified
architecture. These should all be deployed in parallel, as an
instance of a defense-in-depth approach [67]. The various
mechanisms proposed here are summarized in Table VI,
see [68] for details of the mitigation.

As shown in the table, security attacks can be divided into
two categories: execution-based and communication-based.
The execution-based attacks target the configuration of the
FN to interrupt the execution of the assigned applications.
The FNs in the fogified architecture employ user access
policies and apply configurations that are determined by the
node configuration component. Partitioning introduces another
protection mechanism because safety-critical applications are
isolated in separate partitions. The isolation is enforced both
spatially and temporally such that not only each partition is
not accessible to other partitions but also its execution does
not interrupt the execution of other partitions.

Communication-based attacks affect the operation of a
system by tampering with the network communication. Be-
cause the fog-based solution uses TSN, we focus here on
the security vulnerabilities of TSN networks. TSN relies on
clock synchronization for some of its mechanisms, e.g., the

scheduled traffic type implemented with GCLs via 802.1Qbv.
Hence, clock synchronization can be a security weakness for
TSN [69]–[71].

We now consider execution-based attacks. We assume that
an attacker has control of FN N1 and tries to interrupt the
execution of high-criticality applications. The malware, which
we denote as task γ36, runs on a partition with criticality level
0 (Table V), and targets the interruption of the partition with
criticality level 3, which runs motor control applications. The
security configuration component implemented in the node
configuration component (Fig. 7e) monitors the execution of
tasks according to their pre-computed schedule tables, iden-
tifies tasks with suspicious activity (e.g., unresponsive tasks
or unauthorized access to resources), and performs predefined
actions on the task (e.g., stopping the task and recovering the
application).

Performance of virtualized control: In the baseline ar-
chitecture, critical control applications are assigned to run on
dedicated processing elements, i.e., PLCs, which are config-
ured to meet the non-functional performance requirements of
the control applications, such as deadlines and QoC. The QoC
captures different aspects of the performance of a controller,
i.e., rapidity and accuracy of the controller, see [66] for more
information.

The fogified architecture uses deterministic hypervisors to
virtualize applications on FNs, similar to [58], where hyper-
visors provide deterministic access to shared resources via
a static configuration table and provide spatial and tempo-
ral isolation of mixed-criticality applications via partitioning.
Because critical control applications are virtualized and imple-
mented as tasks, the configuration of the fogified architecture

12

TABLE V
UC’S APPLICATIONS RUNNING ON THE FN N1

Criticality Apps. No. of No. of Bandwidth Routing Mapping App. core Total utilization Total utilization
tasks streams utilization (baseline) utilization w/o partitioning incl. partitioning

3 MC1(γ1) 2 1 0.2% p1 → SW1 → N1 D1 15% 126% 139%
MC1(γ2) 2 1 0.2% p3 → SW1 → N1 D2 15%
MC1(γ3) 2 1 0.2% p5 → SW1 → N1 D3 15%
MC1(γ4) 2 1 0.2% p7 → SW1 → N1 D4 15%
MM2(γ9) 4 2 0.3% N1 → SW1 → SW2 → N2 C1 12%

N2 → SW2 → SW1 → N1

MM2(γ10) 4 2 0.3% p9 → SW2 → SW1 → N1 C2 12%
p11 → SW2 → SW1 → N1

MM2(γ11) 4 2 0.3% N1 → SW1 → SW2 → SW3 → A1 C3 12%
N1 → SW1 → SW2 → SW3 → A2

SS3(γ15) 2 0 0% – N/A 10%
SS3(γ16) 2 0 0% – N/A 10%
SS3(γ17) 2 0 0% – N/A 10%

2 SR4(γ21) 1 1 0.1% p2 → SW1 → N1 C1 1.5% 18% 20%
SR4(γ22) 1 1 0.1% tr1 → SW2 → SW1 → N1 C1 1.5%
SR4(γ23) 1 1 0.1% p4 → SW1 → N1 C2 1.5%
SR4(γ24) 1 1 0.1% tr2 → SW3 → SW2 → SW1 → N1 C2 1.5%
SR4(γ25) 1 1 0.1% p6 → SW1 → N1 C3 1.5%
SR4(γ26) 1 1 0.1% tr3 → SW3 → SW2 → SW1 → N1 C3 1.5%
DA5(γ33) 4 3 0.5% N1 → SW1 → SW2 → SW3 → Cloud IPC1 9%

Cloud→ SW3 → SW2 → SW1 → N1

N1 → SW1 → SW2 → SW3 → Cloud

0 ML6(γ34) 6 2 0.4% tr1 → SW2 → SW1 → N1 N/A 8% 16% 17%
N1 → SW1 → SW2 → SW3 → Cloud

ML6(γ35) 6 2 0.4% tr2 → SW3 → SW2 → SW1 → N1 N/A 8%
N1 → SW1 → SW2 → SW3 → Cloud

Sum 160% 175%
1 Motor Control
2 Machine Management
3 Safety Service
4 Sensor Reading
5 Database Access
6 Machine Learning

(e.g., task and communication scheduling) has an impact on
the QoC of control applications [72], [73].

The control functions are monolithic in the baseline ar-
chitecture and do not exchange critical messages over the
Profinet fieldbus. However, in the fog-based solution, critical
control tasks exchange messages with each other as industrial

TABLE VI
THREATS AND THEIR MITIGATION

Threat Mitigation
Man-in-the-middle,
impersonation

Confidential, authenticated com. channels

Attack impact Service isolation (e.g., partitions)

Remote attacks Firewalls, endpoint whitelisting

DoS Redundant network topologies

TSN security Isolation of the TSN protocol, per-stream filter-
ing

Physical attacks Hardware token for configuration changes

Detection Security monitoring services

“things”, e.g., as sensors and actuators. Furthermore, the
fogified architecture shares the same communication medium,
i.e., TSN, for hard and soft real-time, non-critical, and best-
effort communication. TSN has mechanisms to guarantee the
timing requirements of critical streams, e.g., via scheduling
enforced by GCLs [73], but these must be properly configured.

The node configuration component determines the config-
uration needed to guarantee good control performance, mea-
sured via the QoC metric. The component uses a metaheuristic
solution proposed in [20] to optimize the hypervisor partition
tables, map the tasks to the processing cores of the multi-
core processors of the FNs, assign the tasks to partitions,
and schedule the tasks inside the partition tables, optimizing
the QoC of control applications. The proposed approach uses
JitterTime [66] to evaluate the QoC of control applications
and uses the QoC value as an objective for optimizing the
schedule tables. The best QoC is achieved when control tasks
experience zero jitter and the end-to-end delay of control
applications are minimum.

The node management component also employs the con-

13

straint programming-based schedule synthesis strategy, which
aims to maximize the QoC and satisfy the deadlines of real-
time messages, as proposed in [30] to schedule the traffic.
The proposed approach schedules each frame individually
and generates static schedule tables. Optimizing schedules for
QoC means minimizing end-to-end delay and jitter for real-
time messages and maximizing the execution slice for control
applications. The execution slice is the time interval between
reception of the control input messages and transmission of
the control output messages, see [30] for more information.

We evaluated the control performance of the proposed UC
solution. We assume that the applications in Table V are
running on FN N1, which has a dual-core processor and
exchanges network streams via TSN. Columns 3 to 6 in the
table show the task and stream details, which are the total
number of tasks, total number of streams, total bandwidth
utilization of streams on the 1 Gbps link, and the the routing,
respectively. We assume that applications γ1 to γ4 are motor
control applications that control the speed of the electric
motors. Each motor control application exchanges a message
with a part-present sensor, calculates the control function
similar to the function presented in [72], and applies the
respective output signal to electric motors.

Our proposed strategy for communication scheduling in
TSN successfully scheduled all streams, i.e., none of the
deadlines were missed, and optimized the schedules for the
QoC. We also evaluated the performance of our proposed
optimization strategy for task scheduling, and the proposed
system successfully scheduled all the tasks and determined
the task mapping to the cores.

The results show that all streams have zero jitter, which
improves the QoC. We present the results in Table VII, where
the I/O jitter, maximum end-to-end delay of the streams,
and QoC values are reported using JitterTime [66], which
simulates the behavior of the control application with respect
to execution timing. We achieved a good control performance
with an average QoC value of 0.092 using the objective defined
in [20].

Hardware cost: From a monetary perspective, the fogi-
fied architecture provides incentives concerning reducing the
hardware cost. The common equipment cost for both the
architectures Ccost of implementing the system shown in
Fig. 9 is the sum of the equipment costs that are common
for both, i.e., the first six items of Table III. We compute
the common equipment costs as Ccost = 3.750 (all values

TABLE VII
QOC OF CONTROL APPLICATIONS RUNNING ON FN N1

App. IO Jitter Max E2E delay (ms) QoC
γ1 0 31 0.089

γ2 0 29 0.081

γ3 0 33 0.101

γ4 0 32 0.096

are in USD). The architecture-specific costs can be divided
into baseline cost Bcost and fogified cost Fcost. Hence, the
total costs of the baseline and fogified architectures are TB

cost

and TF
cost, respectively. Therefore, TB

cost = Bcost + Ccost

and TF
cost = Fcost + Ccost. We computed the total costs

for the baseline architecture and the fogified architecture as
TB
cost = 10, 750 and TF

cost = 6, 050, respectively.
Furthermore, we consider scenarios in which the UC is

updated with new features. For example, the UC employs
an application that stops the conveyor belts when they do
not carry a load to save energy. In the fogified architecture,
this application is deployed on FNs via the Cloud connec-
tion. However, in the baseline architecture, the application is
deployed on each processing element individually, increasing
the management costs.

Data analytics: In a Cloud-based AI implementation, dis-
tributed participants upload their data to the Cloud, where the
collected historical data is processed in a centralized fashion.
The downsides of this approach are that (1) it is bandwidth-
and time- consuming to upload this data and (2) it impairs
privacy via potential data leakage. The solution is to utilize
the edge device resources to carry out data analytics at the
edge. A recent study [74] analyzed the minimal requirements
of a reconstruction attack and provided insight into choosing
the model size and architecture during the design of a ML
algorithm. With the release of the General Data Protection
Regulation (GDPR) [75], data privacy protection has become
a legal requirement.

We assume a scenario in which four airlines have decided to
predict passenger satisfaction. As part of this survey, passenger
baggage information must be processed. Implementing an
ML approach on the UC implemented with the baseline
architecture is impossible because processing elements such
as the PLCs and IPC do not provide sufficient resources,
services, and connectivity to deploy such an application. Thus,
a decentralized machine learning approach is implemented to
run on the FNs of the fogified architecture.

The airlines aim to collaboratively train a predictor for
passenger satisfaction. First, the airlines locally train their
own models based on their own data. Second, they share the
updated model with the Cloud based on their own data. Finally,
the Cloud aggregates and updates the global model and sends
it back to the airlines. The entire procedure can be repeated
multiple times. The features we used in this experiment are
passenger features such as gender and age, and flight features
such as flight class, departure time, baggage weight, flight
destination, number of bags, and baggage size. We cast all
categorical features into numerical ones and normalized them
to a range between zero and one during the preprocessing step.
Here, we employ logistic regression for the binary predictor.
Given X ∈ RN×d, N is the total number of data and d is
the dimension. Logistic regression maps the linear product of
features to the range between zero and one using a sigmoid
function, defined as S(z) = 1

1+e−z , where z is a linear com-
bination of features defined as zi =

∑d
j wjxij ∀i ∈ [1, N].

14

Airline 1 Airline 2 Airline 3 Airline 4 Aggregated

78

80

82

84

78.23%

84.58%

82.83%
82.25%

85.12%
A

cc
ur

ac
y

(%
)

Fig. 11. Distributed ML: four airlines jointly train a global model. The aggregated model outperforms a single entity after one-shot communication and
demonstrates a good performance.

In Fig. 11, we illustrate the advantage of the aggregation step
using one-shot communication, where the aggregated accuracy
of models created by individual airlines.

The implementation significantly decreases the upload
bandwidth. For example, it may save (B − 1) × 8d bytes
for logistic regression model, where B is the batch size
for one shot and, d is the data dimension. This will save
n×(B−1)×8d for n-shot communications, and the advantage
is more obvious with high-dimensional data (d is large).
Moreover, the FN can reply to customer queries without a large
delay, which is the main drawback of Cloud-based AI. The
data remaining in the generation location significantly reduce
the risk of privacy leakage.

V. CONCLUSIONS

In this study, we addressed electric drives, which are widely
used in industrial applications. We proposed a way to re-
engineer them as FNs, a process that we called fogification,
based on the recently proposed FORA FCP reference architec-
ture. We modeled and designed the fogified drive architecture
using the AADL, capturing the main components and their in-
terconnections. The design was driven by a set of requirements
that we created that consider both the baseline functionality
of the drives and their envisioned role as FNs. Fog-based

drives are naturally located at the edge of the network, close
to the machines, sensors, and actuators. Using the proposed
architecture, we identified a solution for a self baggage drop
system UC. We defined several KPIs for evaluating the suit-
ability of our fog-based architecture for the UC. The evaluation
results show improved performance, reduced hardware cost,
and an increased analytics capability, without jeopardizing
safety and security or the performance of virtualized critical
control applications. As the evaluation shows, the fog-based
drive architecture is a promising approach to implement the
functionalities envisioned in Industry 4.0. In our future work,
we will further integrate required technology components for
the implementation of the use case.

ACKNOWLEDGEMENTS

The research leading to these results has received fund-
ing from the European Union’s Horizon 2020 Research and
Innovation Programme under the Marie Skłodowska-Curie
grant agreement No. 764785 (FORA—Fog Computing for
Robotics and Industrial Automation), and from the European
Union’s Horizon 2020 Research and Innovation Programme
under the ECSEL Joint Undertaking (JU) grant agreement No.
101007273 (DAIS—Distributed Artificial Intelligent System).

15

REFERENCES

[1] H. Bauer, C. Baur, D. Mohr, A. Tschiesner, T. Weskamp, K. Alicke,
and D. Wee, “Industry 4.0 after the initial hype–where manufacturers
are finding value and how they can best capture it,” McKinsey Digital,
2016.

[2] P. Daugherty, P. Banerjee, W. Negm, and A. E. Alter, “Driving uncon-
ventional growth through the industrial internet of things,” accenture
technology, 2015.

[3] D. R. Harp and B. Gregory-Brown, “IT/OT convergence bridging the
divide,” NEX DEFENSE, 2014.

[4] M. Garcı́a-Valls, T. Cucinotta, and C. Lu, “Challenges in real-time
virtualization and predictable cloud computing,” Journal of Systems
Architecture, vol. 60, no. 9, pp. 726–740, 2014.

[5] W. Steiner and S. Poledna, “Fog computing as enabler for the Industrial
Internet of Things,” e & i Elektrotechnik und Informationstechnik, vol.
133, no. 7, pp. 310–314, 2016.

[6] IEEE, “IEEE 1934-2018 - IEEE Standard for Adoption of OpenFog
Reference Architecture for Fog Computing,” 2018.

[7] F. Bonomi, R. Milito, P. Natarajan, and J. Zhu, “Fog computing: A
platform for internet of things and analytics,” in Big Data and Internet
of Things: A Roadmap for Smart Environments. Springer, 2014, pp.
169–186.

[8] C. Puliafito, E. Mingozzi, F. Longo, A. Puliafito, and O. Rana, “Fog
computing for the Internet of Things: A Survey,” ACM Transactions on
Internet Technology (TOIT), vol. 19, no. 2, pp. 1–41, 2019.

[9] TTTech Computertechnik AG, “Nerve,” http://tttech.com/products/
industrial/industrial-iot/nerve, 2019 (accessed October 7, 2019).

[10] Nebbiolo Technologies, Inc, “Nebbiolo,” https://www.nebbiolo.tech/,
2021 (accessed April 1, 2021).

[11] I. Boldea and S. A. Nasar, Electric drives. CRC press, 2016.
[12] V. Karagiannis, S. Schulte, J. Leitao, and N. Preguica, “Enabling

fog computing using self-organizing compute nodes,” in International
Conference on Fog and Edge Computing (ICFEC), 2019, pp. 1–10.

[13] Fog Computing for Robotics and Industrial Automation (FORA), “Fog
Computing Platform: requirements and initial designs,” https://drive.
google.com/file/d/1QwBfcqij72ZdeMWmhwAwm-MdSHePElUy/view,
2019 (accessed March 25, 2020).

[14] S. Yi, Z. Hao, Z. Qin, and Q. Li, “Fog Computing: Platform and
Applications,” in Proc. of IEEE Workshop on Hot Topics in Web Systems
and Technologies, 2015, pp. 73–78.

[15] P. Pop, B. Zarrin, M. Barzegaran, S. Schulte, S. Punnekkat, J. Ruh, and
W. Steiner, “The FORA Fog Computing Platform for Industrial IoT,”
Information Systems, vol. 98, p. 101727, 2021.

[16] Q. Perret, P. Maurere, E. Noulard, C. Pagetti, P. Sainrat, and B. Triquet,
“Temporal Isolation of Hard Real-Time Applications on Many-Core
Processors,” in Proc. of IEEE Real-Time and Embedded Technology and
Applications Symposium, 2016, pp. 1–11.

[17] S. Bak, D. K. Chivukula, O. Adekunle, M. Sun, M. Caccamo, and
L. Sha, “The System-Level Simplex Architecture for Improved Real-
Time Embedded System Safety,” in Proc. of IEEE Real-Time and
Embedded Technology and Applications Symposium, 2009, pp. 99–107.

[18] Lui Sha, “Using simplicity to control complexity,” IEEE Software,
vol. 18, no. 4, pp. 20–28, 2001.

[19] D. Tamas-Selicean and P. Pop, “Design optimization of mixed-criticality
real-time systems,” ACM Transaction on Embedded Computing, vol. 14,
no. 3, pp. 50–78, May 2015.

[20] M. Barzegaran, A. Cervin, and P. Pop, “Performance Optimization of
Control Applications on Fog Computing Platforms Using Scheduling
and Isolation,” IEEE Access, vol. 8, pp. 104 085–104 098, 2020.

[21] The Linux Foundation®, “Xen Project,” https://xenproject.org, 2019
(accessed October 7, 2019).

[22] A. Masrur, S. Drossler, T. Pfeuffer, and S. Chakraborty, “VM-Based
Real-Time Services for Automotive Control Applications,” in IEEE In-
ternational Conference on Embedded and Real-Time Computing Systems
and Applications, Aug 2010, pp. 218–223.

[23] N. Desai and S. Punnekkat, “Safety of Fog-Based Industrial Automation
Systems,” in Proc. of the Workshop on Fog Computing and the IoT, 2019,
p. 6–10.

[24] C.-H. Hong and B. Varghese, “Resource Management in Fog/Edge
Computing: A Survey on Architectures, Infrastructure, and Algorithms,”
ACM Computing Surveys, vol. 52, no. 5, 2019.

[25] P. Pop, M. L. Raagaard, M. Gutierrez, and W. Steiner, “Enabling Fog
Computing for Industrial Automation Through Time-Sensitive Network-
ing (TSN),” IEEE Communications Standards Magazine, vol. 2, no. 2,
pp. 55–61, 2018.

[26] W. Jiang, P. Pop, and K. Jiang, “Design Optimization for Security- and
Safety-Critical Distributed Real-Time Applications,” Microprocessors
and Microsystems, vol. 52, no. C, p. 401–415, 2017.

[27] W. Jiang, H. Hu, J. Zhan, and K. Jiang, “Work-in-Progress: Design of
Security-Critical Distributed Real-Time Applications with Fault-Tolerant
Constraint,” in Proc. of International Conference on Embedded Software,
2018, pp. 1–2.

[28] P. Priller, W. Gruber, N. Olberding, and D. Peinsipp, “Towards perfectly
scalable real-time systems,” in Proc. of International Conference on
Computer Safety, Reliability, and Security. Springer, 2014, pp. 212–
223.

[29] S. K. Memon, K. Nisar, M. H. A. Hijazi, J. J. Rodrigues, A. H.
Sodhro, and S. Pirbhulal, “A Review on 802.11 MAC Protocols In-
dustrial Standards, Architecture Elements for Providing QoS Guarantee,
Supporting Emergency Traffic, and Security: Future Directions,” Journal
of Industrial Information Integration, p. 100225, 2021.

[30] M. Barzegaran and P. Pop, “Communication Scheduling for Control
Performance in TSN-Based Fog Computing Platforms,” IEEE Access,
vol. 9, pp. 50 782–50 797, 2021.

[31] A. Al-Qerem, M. Alauthman, A. Almomani, and B. Gupta, “IoT
transaction processing through cooperative concurrency control on fog–
cloud computing environment,” Soft Computing, vol. 24, no. 8, pp. 5695–
5711, 2020.

[32] P. Chaudhary, B. B. Gupta, X. Chang, N. Nedjah, and K. T. Chui,
“Enhancing big data security through integrating XSS scanner into fog
nodes for SMEs gain,” Technological Forecasting and Social Change,
vol. 168, p. 120754, 2021.

[33] N. Reusch, P. Pop, and S. S. Craciunas, “Work-in-progress: Safe and
secure configuration synthesis for TSN using constraint programming,”
in 2020 IEEE Real-Time Systems Symposium (RTSS), 2020, pp. 387–
390.

[34] F. Mirsadeghi, M. K. Rafsanjani, and B. B. Gupta, “A trust infrastructure
based authentication method for clustered vehicular ad hoc networks,”
Peer-to-Peer Networking and Applications, pp. 1–17, 2020.

[35] A. Ahmadi, A. H. Sodhro, C. Cherifi, V. Cheutet, and Y. Ouzrout,
“Evolution of 3C cyber-physical systems architecture for industry 4.0,”
in International Workshop on Service Orientation in Holonic and Multi-
Agent Manufacturing. Springer, 2018, pp. 448–459.

[36] P. Leitão, A. W. Colombo, and S. Karnouskos, “Industrial automation
based on cyber-physical systems technologies: Prototype implementa-
tions and challenges,” Computers in Industry, vol. 81, pp. 11 – 25,
2016.

[37] T. Terzimehic, M. Wenger, A. Zoitl, A. Bayha, K. Becker, T. Müller,
and H. Schauerte, “Towards an industry 4.0 compliant control software
architecture using IEC 61499 OPC UA,” in 2017 22nd IEEE Interna-
tional Conference on Emerging Technologies and Factory Automation
(ETFA), 2017, pp. 1–4.

[38] P. Hu, S. Dhelim, H. Ning, and T. Qiu, “Survey on fog computing:
architecture, key technologies, applications and open issues,” Journal of
network and computer applications, vol. 98, pp. 27–42, 2017.

[39] M. S. Shaik, V. Struhár, Z. Bakhshi, V.-L. Dao, N. Desai, A. V.
Papadopoulos, T. Nolte, V. Karagiannis, S. Schulte, A. Venito et al.,
“Enabling fog-based industrial robotics systems,” in 2020 25th IEEE
International Conference on Emerging Technologies and Factory Au-
tomation (ETFA), vol. 1, 2020, pp. 61–68.

[40] M. Barzegaran, N. Desai, J. Qian, K. Tange, B. Zarrin, P. Pop, and
J. Kuusela, “Fogification of electric drives: An industrial use case,” in
2020 25th IEEE International Conference on Emerging Technologies
and Factory Automation (ETFA), vol. 1, 2020, pp. 77–84.

[41] P. H. Feiler and D. P. Gluch, Model-based engineering with AADL:
an introduction to the SAE architecture analysis & design language.
Addison-Wesley, 2012.

[42] S. A. Team et al., “An extensible open source AADL tool environment
(OSATE),” Software Engineering Institute, 2006.

[43] Y. Wang, D. Ma, Y. Zhao, L. Zou, and X. Zhao, “An AADL-based
modeling method for ARINC653-based avionics software,” in IEEE 35th
Annual Computer Software and Applications Conference, 2011, pp. 224–
229.

[44] A. Hughes and B. Drury, Electric motors and drives: fundamentals,
types and applications. Newnes, 2019.

16

[45] TechNavio, “Electric Drives Market by End-users, Product, Power
Rating, and Geography - Global Forecast 2019-2023,” https:
//www.technavio.com/report/electric-drives-market-industry-analysis,
2019 (accessed December 1, 2020).

[46] T. J. Williams, “The Purdue enterprise reference architecture,” Comput-
ers in industry, vol. 24, no. 2-3, pp. 141–158, 1994.

[47] J. Berthing and A. Danfoss, “D5. 6 drive controller,” ARTEMIS JU
RECOMP Project, 2012.

[48] J. L. Gutiérrez-Rivas, S. Holmbacka, M. Mı́ndez-Macı́as, W. Lund,
S. Lafond, J. Lilius, and J. Dı́az-Alonso, “Safe motor controller in a
mixed-critical environment with runtime updating capabilities,” Journal
of Universal Computer Science, vol. 21, no. 2, pp. 177–205, 2015.

[49] J. L. Gutiérrez, J. Berthing, D. Fernández, and J. Dıaz, “Safety-
critical platform model based on certification standards,” III Jornadas
de Computación Empotrada, JCE, 2012.

[50] J. Berthing and T. Maier, “Formalised implementation of safety related
hw/sw architectures in compliance with functional safety requirements,”
in 2007 2nd Institution of Engineering and Technology International
Conference on System Safety. IET, 2007, pp. 153–158.

[51] IEEE, “Official Website of the 802.1 Time-Sensitive Networking Task
Group,” http://www.ieee802.org/1/pages/tsn.html, 2016 (accessed March
5, 2020).

[52] Siemens Simatic, “Profinet system description–system manual,” Issue
A5E00298288-04, vol. 6, 2008.

[53] IEC, “TIEC 61131–3 2nd Ed. Programmable Controllers-Programming
Languages,” International Electrotechnical Commission, Tech. Rep.,
2003.

[54] W. Mahnke, S.-H. Leitner, and M. Damm, OPC Unified Architecture.
Springer Science & Business Media, 2009.

[55] A. H. Sodhro, N. Zahid, L. Wang, S. Pirbhulal, Y. O. Ouzrout,
A. Sekhari, A. V. L. Neto, A. R. L. De Macedo, and V. H. C.
De Albuquerque, “Towards ML-based Energy-Efficient Mechanism for
6G Enabled Industrial Network in Box Systems,” IEEE Transactions on
Industrial Informatics, vol. 17, no. 10, pp. 7185–7192, 2020.

[56] C. L. Stergiou, K. E. Psannis, and B. B. Gupta, “IoT-based big data
secure management in the fog over a 6G wireless network,” IEEE
Internet of Things Journal, vol. 8, no. 7, pp. 5164–5171, 2020.

[57] IEEE, “Official Website of the 802.1 Audio Video Bridging Task Group,”
https://www.ieee802.org/tsn/802-1as-rev, 2013 (accessed April 1, 2021).

[58] J. Ruh and W. Steiner, “The need for deterministic virtualization in
the Industrial Internet of Things,” in Proc. of the Workshop on Fog
Computing and the IoT, 2019, pp. 26–30.

[59] O. I. Foundation, “Open Source Edge Computing Architecture,” https:
//www.openstack.org, 2012 (accessed April 1, 2021).

[60] A. Stanford-Clark and H. L. Truong, “MQTT for sensor networks
(MQTT-SN) protocol specification,” International business machines
(IBM) Corporation version, vol. 1, p. 2, 2013.

[61] Z. Shelby, K. Hartke, and C. Bormann, “The constrained application
protocol (CoAP),” 2014.

[62] K. Sandström, A. Vulgarakis, M. Lindgren, and T. Nolte, “Virtualization
technologies in embedded real-time systems,” in IEEE 18th Conference
on Emerging Technologies & Factory Automation, 2013, pp. 1–8.

[63] R. Kaiser and S. Wagner, “The PikeOS concept: History and design,”
SysGO AG White Paper. Available: http://www.sysgo.com, 2007.

[64] ACRN, “Official Website of the Project ACRN™,” http://projectacrn.
org/, 2019 (accessed December 8, 2019).

[65] G. C. Buttazzo, Hard real-time computing systems: predictable schedul-
ing algorithms and applications. Springer Science & Business Media,
2011, vol. 24.

[66] A. Cervin, P. Pazzaglia, M. Barzegaran, and R. Mahfouzi, “Using
JitterTime to Analyze Transient Performance in Adaptive and Recon-
figurable Control Systems,” in Proc. of IEEE International Conference
on Emerging Technologies and Factory Automation, 2019, pp. 1025–
1032.

[67] C. L. Smith, “Understanding concepts in the defence in depth strategy,”
in IEEE 37th Annual 2003 International Carnahan Conference on
Security Technology, 2003. Proceedings. IEEE, 2003, pp. 8–16.

[68] K. Tange, M. De Donno, X. Fafoutis, and N. Dragoni, “A systematic
survey of industrial internet of things security: Requirements and fog
computing opportunities,” IEEE Communications Surveys & Tutorials,
vol. 22, no. 4, pp. 2489–2520, 2020.

[69] E. Itkin and A. Wool, “A security analysis and revised security extension
for the precision time protocol,” IEEE Transactions on Dependable and
Secure Computing, vol. 17, no. 1, pp. 22–34, 2017.

[70] M. Pahlevan, B. Balakrishna, and R. Obermaisser, “Simulation frame-
work for clock synchronization in time sensitive networking,” in 2019
IEEE 22nd International Symposium on Real-Time Distributed Comput-
ing (ISORC), 2019, pp. 213–220.

[71] Y. Xu and X. Xie, “Modeling and analysis of security protocols using
colored Petri nets.” JCP, vol. 6, no. 1, pp. 19–27, 2011.

[72] M. Barzegran, A. Cervin, and P. Pop, “Towards Quality-of-Control-
Aware Scheduling of Industrial Applications on Fog Computing Plat-
forms,” in Proceedings of the Workshop on Fog Computing and the IoT.
ACM, 2019, pp. 1–5.

[73] M. Barzegaran, B. Zarrin, and P. Pop, “Quality-Of-Control-Aware
Scheduling of Communication in TSN-Based Fog Computing Platforms
Using Constraint Programming,” in 2nd Workshop on Fog Computing
and the IoT, vol. 80. Schloss Dagstuhl-Leibniz-Zentrum für Informatik,
2020, pp. 3:1–3:9.

[74] J. Qian and L. K. Hansen, “What can we learn from gradients?” arXiv
preprint arXiv:2010.15718, 2020.

[75] Proton Technologies AG., “General Data Protection Regulation,” https:
//gdpr.eu, 2021 (accessed April 1, 2021).

17

