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a b s t r a c t

Industry 4.0 will only become a reality through the convergence of Operational and Information
Technologies (OT & IT), which use different computation and communication technologies. Cloud
Computing cannot be used for OT involving industrial applications, since it cannot guarantee strin-
gent non-functional requirements, e.g., dependability, trustworthiness and timeliness. Instead, a new
computing paradigm, called Fog Computing, is envisioned as an architectural means to realize the
IT/OT convergence. In this paper we propose a Fog Computing Platform (FCP) reference architecture
targeting Industrial IoT applications. The FCP is based on: deterministic virtualization that reduces the
effort required for safety and security assurance; middleware for supporting both critical control and
dynamic Fog applications; deterministic networking and interoperability, using open standards such
as IEEE 802.1 Time-Sensitive Networking (TSN) and OPC Unified Architecture (OPC UA); mechanisms
for resource management and orchestration; and services for security, fault tolerance and distributed
machine learning. We propose a methodology for the definition and the evaluation of the reference
architecture. We use the Architecture Analysis Design Language (AADL) to model the FCP reference
architecture, and a set of industrial use cases to evaluate its suitability for the Industrial IoT area.

© 2021 Elsevier Ltd. All rights reserved.
1. Introduction

We are at the beginning of a new industrial revolution (Indus-
ry 4.0), which will bring increased productivity and flexibility,
ass customization, reduced time-to-market, improved product
uality, innovations and new business models. Industrial Internet
f Things (IIoT, also called Industrial Internet) is a key enabling
echnology for Industry 4.0, where the focus is on interconnected
achines [1]. IIoT is providing the infrastructure that underpins
ur Smart Society (Smart Energy Grid, Smart Cities, Smart and
reen Mobility, Smart Manufacturing, etc.), providing solutions
or several societal challenges.

However, Industry 4.0 will only become a reality through the
onvergence of Operational and Information Technologies (OT
IT), which are currently separated in a hierarchical pyramid
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(Purdue Reference Model [2], see Fig. 1) and use different com-
putation and communication technologies. OT consists of cyber–
physical systems that monitor and control physical processes
that manage, e.g., automated manufacturing, critical infrastruc-
tures, smart buildings and smart cities. These application areas
are typically safety-critical and real-time, requiring guaranteed
extra-functional properties, such as, real-time behavior, reliabil-
ity, availability, safety, and security and often required to show
compliance to industry specific standards. OT uses proprietary
solutions implemented with barriers between each level in the
pyramid in Fig. 1, imposing severe restrictions on the information
flow.

Instead, a new paradigm, called Fog Computing, is envisioned
as an architectural means to realize the IT/OT convergence in In-
dustrial IoT [3]. Fog Computing is a ‘‘system-level architecture that
distributes resources and services of computing, storage, control
and networking anywhere along the continuum from Cloud to
Things’’ [4]. With Fog Computing, communication devices, such as
switches and routers are extended with computational and stor-
age resources to enable a variety of communication and computa-
tion options. Fog Computing will enable a powerful convergence,
unification and standardization at the networking, security, data,
computing, and control levels. It will lead to improved inter-
operability, security, more efficient and rich control, and higher
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Fig. 1. Industry 4.0: IT/OT convergence supported by the FORA Fog Computing Platform (FCP).
Fig. 2. FORA Fog Computing Platform concept: UCs and main components.
anufacturing efficiency and flexibility [5]. Several initiatives are
urrently working towards realizing this vision [6,7].
One notable initiative is the European Training Network on

og Computing for Robotics and Industrial Automation (FORA
TN1). The vision is to virtualize the industrial control (which
s then implemented as control applications running on a Fog
omputing Platform) and achieve the same level of dependability
s the one taken for granted in OT. The convergence of IT and
T will be supported by: the increased usage of IP-protocols,
.g., standardized Deterministic Ethernet solutions from IEEE
ime-Sensitive Networking (TSN) Task Group [8], upcoming 5G
ireless standards [9], and interoperability standards such as
PC Unified Architecture (OPC UA) [10], all integrated into a Fog
omputing Platform (FCP), (see Fig. 2), which brings computation,
ommunication and storage closer to the edge of the network.
ORA’s research objectives focus on: future industrial automa-
ion architectures and applications based on Fog Computing,
eterministic virtualization and execution, deterministic wired
nd wireless communication, resource provisioning and resource
anagement, service-oriented architecture solutions, real-time
ata analytics and security.

.1. Contributions

In this paper we propose a reference system architecture for a
safe and secure Fog Computing Platform (FCP). In our context, an
architecture captures the fundamental organization of a system (a
collection of components performing a specific set of functions)
in terms of its components, their relationships to each other, and

1 See the FORA project website for more details, http://fora-etn.eu.
2

to the environment, and the principles guiding its design and
engineering. A reference architecture provides a proven template
solution for an architecture for a particular domain; in our case,
we are targeting the Industrial IoT area. A Fog Computing Platform
provides a set of technologies that are used as a base upon
which mixed-criticality applications (safety critical, industrial, fog
applications) are developed. The proposed reference platform
architecture uses open standards and open source, e.g., TSN, OPC
UA, 5G and OpenStack for the Edge.2

We propose a methodology to derive and evaluate the pro-
posed FCP architecture. We use the standardized Architecture
Analysis Design Language (AADL) [11] (which is an SAE standard)
to model the FCP architecture. We have used several industrial
Use Cases (UCs) [12–14] to evaluate the proposed architecture.
We report in the paper in detail the results obtained by using
the architecture to implement an industrial conveyor distribution
system UC.

The related work is presented in Section 2. Section 3 intro-
duces the process that has been used to derive the FORA Fog
Computing Platform Architecture. The details of the Fog Comput-
ing architecture that we propose for Industrial IoT are presented
in Section 4 using AADL. We discuss the evaluation of the ar-
chitecture in Section 5 where we focus on an industrial use
case. Finally, we conclude the paper and provide a discussion in
Section 6.

2. Related work

Within this section, we discuss the most important related
work relevant to the FORA Reference Architecture. Especially, we

2 https://wiki.openstack.org/wiki/Edge_Computing_Group.

http://fora-etn.eu
https://wiki.openstack.org/wiki/Edge_Computing_Group
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ill have a look at reference architectures in the field of fog
omputing (Section 2.1), the manifold approaches to resource
anagement and optimization that have been presented in re-
ent years (Section 2.2), and will discuss the utilization of fog
omputing in industrial settings (Section 2.3).

.1. Reference architectures

Especially in the first years of research on fog computing, a
umber of (reference) architectures have been proposed, starting
ith the seminal work on fog computing by Bonomi et al. [3,
]. There, the authors have already presented a layered model,
efining fog computing on a high level. The different layers
nclude computational resources in embedded sensors, multi-
ervice edge, the core network and (cloud-based) data centers.
n early reference architecture has been presented by Dastjerdi
t al. [15], where the authors also divide the fog into a number of
ierarchical layers, including IoT devices at the edge of the net-
ork, the network itself, cloud services and resources, software-
efined resource management, and IoT applications running on
op of the fog resources.

A standardized reference architecture for fog computing is the
‘OpenFog Reference Architecture for Fog Computing’’ [4] pro-
osed by the OpenFog Consortium, which has later merged with
he Industrial Internet Consortium (IIC). This reference architec-
ure has in 2018 been standardized by IEEE as the ‘‘1934–2018
EEE Standard for Adoption of OpenFog Reference Architecture
or Fog Computing’’ [16]. The reference architecture is quite ex-
ensive, covering functional pillars of fog computing, a number
f use cases for fog computing, as well as the actual reference
rchitecture, provided from different viewpoints. Since the Open-
og Reference Architecture is quite versatile, it does naturally
ot cover details for industrial settings, which is the focus of
he FORA reference architecture. Another important initiative
owards standardization in the field of fog and edge computing
s led by the European Telecommunications Standards Institute
ETSI), and focusing on Multi-Access Edge Computing (MEC) [17].
otably, the ETSI activities are very broad and provide a large
umber of publications which provide a lot of details, up to the
evel of providing concrete API specifications. In contrast to the
ork at hand, the ETSI MEC activities rather focus on the edge

evel, however also taking into account fog aspects. Also, the ETSI
EC activities are use case-agnostic, and therefore not specifically
iming at industry settings, as we take into account.
Apart from the two major reference architectures by the Open-

og Consortium and ETSI, there are a number of more specific
eference architectures which are not backed by a large consor-
ium or standardization association: Puliafito et al. [18] present a
eference architecture for a ‘‘follow-me fog’’, which dynamically
igrates services based on user mobility. Habibi et al. [19] focus
ore on the communication aspects by integrating software-
efined networking into a fog computing reference architecture.
e Brito et al. [20] discuss an extension of the OpenFog Reference
rchitecture by providing the means for service orchestration.
There are also reference architectures aiming at specific use

ases: Mahmud et al. [21] extend basic architecture models for
og computing by adding specific components needed for smart
ealthcare scenarios, e.g., facilitating interoperability between
xisting fog clusters. Qi et al. propose a reference architecture for
mart manufacturing applications [22]. Here, the authors address
n application area comparable to the work at hand. Notably, the
eference architecture considers that there is a need for real-time
apabilities in fog computing, and that specific resources need to
e utilized to achieve this. Their reference architecture contains
he means for control, interaction, information integration, and
3

collaboration in smart manufacturing settings. However, in con-
trast to our work, there is no specific discussion of hard real-time
constraints or control applications.

In contrast to the reference architectures discussed so far,
our work explicitly aims at industrial settings, taking into ac-
count hard real-time constraints and specific needs of control
applications.

Apart from the already discussed reference architectures, there
have been further discussions on how to structure fog architec-
tures. Mostly, current fog systems make use of a hierarchical
architecture, as has already been proposed in the OpenFog Ref-
erence Architecture, e.g., [23,24]. However, there are also archi-
tectures which apply a flat structure and apply basic principles
from the field of self-organization and peer-to-peer computing,
e.g., [25,26]. While hierarchical approaches are the current state-
of-the-art, they possess some potential drawbacks, e.g., that some
nodes within a hierarchical fog system may become bottlenecks
or single points of failure [27]. Therefore, within the proposed
FORA Reference Architecture, we apply a flat, fully distributed
architectural style.

2.2. Resource management

Resource management has been a very popular research topic
in the field of fog computing in the last few years, with many
approaches having been presented so far [28,29]. The applied
methods to manage fog resources are manifold, and range from
optimal solutions, e.g., applying mixed-integer linear program-
ming [30], to heuristics, e.g., applying Genetic Algorithms [31].
While most presented solutions are use case-agnostic, there are
also specific approaches for vehicular fog computing [32], smart
healthcare [33], image processing [34], or industrial settings [35,
36]. According to a systematic literature review by Bellendorf
and Mann [28], most approaches to resource management aim
at optimizing latency, while energy efficiency also plays a major
role. In contrast, cost efficiency, which has been a major research
topic in the field of cloud computing [37], is not so prominently
discussed in fog computing.

As outlined in the work at hand, hard real-time behavior
and safety-related aspects are indispensable in the Industrial IoT.
Despite the fact that latency is a major topic in fog resource
management, very few studies explicitly aim at hard real-time
behavior. For instance, Raagard et al. [38,39] discuss the runtime
reconfiguration of TSN schedules for fog computing, thus support-
ing applications composed out of hard real-time control tasks.
Fizza et al. [40] take into account real-time capabilities during
scheduling of tasks and services in the fog. For this, the Earliest
Deadline First approach is applied. A similar approach is provided
by Gomes et al. [41], aiming at healthcare environments. A con-
ceptual approach to enable real-time fog computing is presented
by Kopetz and Poledna [42], where the authors discuss the basic
concept of time-triggered VMs. In addition, the support of soft
real-time applications is mentioned in quite a large number of
studies. For instance, Ning et al. discuss the utilization of fog
computing to support real-time traffic management for smart
cities [43], and Verma and Sood discuss real-time capabilities in
smart healthcare scenarios [44].

2.3. Fog computing in industrial settings

We have already discussed some approaches to apply fog
computing in industrial settings in the former subsections, fo-
cusing on (reference) architectures and resource management for
industrial settings, respectively. Within this subsection, we will
further discuss related work in this area.
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As pointed out above, one important trend in the Industrial IoT
s the convergence of OT & IT. Fog computing has been named as
n architectural means to achieve this convergence [45,46]. More
oncretely, Müller et al. [47,48] present a reference model for a
eamless runtime environment for industrial software, which can
hus be deployed in both the fog and the cloud. This model is
mplemented by orchestrating containers running the single ap-
lications. Similarly, Meixner et al. [49] present a framework for
utomatically placing applications in fog environments, especially
iming at industrial settings.
Apart from this, a number of studies present how to deploy

unctionalities, which are usually hosted in centralized data cen-
ers, closer to the industrial resources, e.g., Cyber–Physical Pro-
uction Systems (CPPS), by making use of fog resources. Aazam
t al. [50] especially discuss the specific requirements of CPPS,
nd how fog computing architectures can help to overcome their
hallenges, with a focus on communication, CPS control, (big)
ata analysis, and sensing. Colelli et al. [51] show how fog re-
ources can be used to improve security in OT and IT networks. Li
t al. [52] present an approach to make use of machine learning in
he fog in order to improve machine maintenance. Similar work is
resented by O’donovan et al. [53]. Fernández-Caramés et al. [54]
tilize fog resources in order to enable augmented reality in
ndustrial settings. Zhou et al. [55] discuss how to control CNC
achine tools through a fog-based solution. The goal here is once
gain to achieve (soft) real-time control of CPS in Industrial IoT
ettings.
While we have only discussed a very limited number of pos-

ible applications for fog computing in the Industrial IoT, it can
e easily seen that the potential applications cover a very broad
pectrum of functionalities. The presented applications could be
ntegrated into the FORA Reference Architecture, thus exploiting
he control and real-time capabilities of our work.

. Reference platform architecture definition and evaluation
ethodology

This section introduces briefly the FORA project and proposes
methodology for the reference platform architecture definition
nd evaluation. FORA is a four-year European Training Network,
tarted in 2017, with the aim of developing a Fog Computing
latform for Industrial IoT. FORA also trains 15 Ph.D. candidates
t 7 partner organizations (both academic and industrial), involv-
ng also 5 other companies that provide hosting, training and
se cases. FORA has a team of over 50 researchers; each Ph.D.
andidate has three advisors, both from industry and academia.
Fig. 2 presents a high-level conceptual overview of the FORA

og Computing Platform architecture. In the left part of the figure,
oxes with a red border represent fog nodes, connected with each
ther and to the Cloud; the thick lines in-between these boxes are
he network. Applications (Apps) run in the Fog and Cloud. The
ORA project is organized around three main research themes:
og Computing Platform, which virtualizes computation, com-
unication and storage; Resource Management and Middleware,
hich uses the platform to provide guarantees for the industrial
ontrol applications and novel Fog/Cloud resource management
echanisms (via a Software Manager—SM); and Dependability
ervices and Application Modeling, which are vertical services
o ensure safety/security aspects and horizontal services to un-
ock high-value data analytics, implemented as Fog applications.
he main building blocks of the platform architecture will be
resented in detail in Section 4. Here, we discuss the steps of
he methodology used for defining the platform architecture, and
ow the resulted architecture has been evaluated. The details of
he evaluation are covered in Section 5.

We have identified within FORA several Use Cases (UCs) that
re relevant to the FORA organizations and which have a good
4

coverage of the Industrial IoT area: UC1—Electric drives as Fog
Nodes in a industrial setting; UC2—Fog-based Industrial Robotic
System; UC3—Next generation of machine control using an Edge
Platform. A high-level description of these UCs is presented in
[56].

The UCs drive the identification of requirements, Key Perfor-
mance Indicators (KPIs) and UC-specific evaluation metrics. The
requirements provide the specific constraints and problems that
have to be addressed in the research themes. The evaluation
metrics and KPIs establish goals that have to be achieved, and
that can be assessed in the evaluation. We have organized the
FORA researchers into three teams, one per use case. These use
case teams have been asked to identify requirements, KPIs and
evaluation metrics. We have provided a template to collect the
requirements, consisting of: Requirement ID, Description, Ratio-
nale, Abstraction level, AADL component names, and relevance to
which research theme.

We have collected 10 KPIs and about 80 requirements, see [56]
for details. We have consolidated these 80 initial requirements,
based on feedback from all the stakeholders, into a coherent set
of 47 requirements. The requirements-related documents have
been periodically updated during the project based on feedback
from the research work and use cases. A partial list of these
requirements is presented in Table 1, where we have eliminated
the list of the UC-specific and low-level requirements due to
space limitations.

We have decided to use the Architecture Analysis and Design
Language (AADL) [11] to model the FORA FCP architecture, see
Section 3.1. The FORA AADL models are shared via a ‘‘git’’ reposi-
tory with all the partners, which contribute to it. The researchers
working in each research theme have been tasked with the def-
inition of its respective platform building blocks and the related
AADL models, see the sub-sections of Section 4.

To evaluate the proposed reference platform architecture, we
have: (i) asked the FORA researchers and other stakeholders, to
provide feedback on the AADL models that define the reference
platform architecture; (ii) used the AADL models to model the
three mentioned use cases; and (iii) implemented the use cases as
‘‘demonstrator prototypes’’ to evaluate the ability of our platform
architecture to support the design and engineering of IIoT sys-
tems. The concrete research outputs of the FORA project, which
can be a hardware or software prototype, a method, a tool, a
model, etc. are gathered as a set of ‘‘Technology Bricks’’ (TBs).
Thus, for (iii), we have used the AADL reference architecture
meta-model to model the UCs and integrated these TBs into the
demonstrators, one for each UC. We have focused on achieving a
high-level of coverage of requirements in the AADL architecture
meta-model and a high coverage of AADL components and TBs
used in the demonstrators. Section 5 presents the evaluation
results focusing on the evaluation via use cases, namely using the
conveyor distribution system demonstrator built for UC1.

3.1. Architecture Analysis and Design Language

The Architecture Analysis and Design Language (AADL) is a
well-known architecture description language in the domain of
real-time embedded systems, which has been introduced by the
Society of Automotive Engineers (SAE) [57]. It can model both
software and hardware components of a system in a modular and
component-oriented approach.

Unlike other modeling languages, e.g., UML and SysML, AADL
provides both textual syntax and graphical notations with pre-
cise semantics. It introduces a different category of components
to model a system, including software components (e.g., data,
thread, thread group, subprogram, process), hardware compo-
nents (e.g., memory, bus, processor, device). It also provides hy-
brid components (abstract, system) to allow hierarchical system
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able 1
elected requirements for the FORA Fog Computing Platform.
ID Description Rationale

R1 The hardware platform shall provide support for
virtualization

Necessary to allow the use and application of modern available hypervisors

R2 The platform shall provide temporal and spatial
isolation via hypervisors

Enables hosting of mixed-criticality applications: the lower criticality functions should not
impair the safety of the higher criticality functions

R3 The platform shall support lightweight container-based
virtualization

This helps to avoid the deployment overhead introduced by the use of hypervisor-based
virtualization

R4 The platform shall provide deterministic inter-node
communication using standard protocols

To guarantee bounded latency communication between the fog node and its environment,
enabling the re-location of critical applications from the machine to the fog node

R5 The platform shall provide reliable and timely wireless
communication for the mobile fog nodes

To meet the strict requirements on reliability and latency communication of mobile fog
applications such as mobile robots

R6 The platform shall provide fault tolerant communication
among the participating compute nodes

In case one or more of the participating compute nodes become unresponsive, the
platform should be able to maintain the connectivity of the responsive compute nodes

R7 The platform shall provide standards-based middleware
for both industrial and Fog applications

To support the development and deployment of mixed-criticality applications

R8 Each fog node shall broadcast its hardware capabilities To ensure efficient resource management, any resource manager shall know the available
hardware resources within the fog network

R9 The platform shall support the specification and
enforcement of security policies

Security policies describe what kind of actions are permissible in a network, and are
valuable tools in the prevention and containment of malicious activity

R10 The fog node shall be able to detect errors during its
operation and to recover

To ensure the fault-tolerant and high-integrity operation of the safety-related applications

R11 The platform shall be able to run critical control
applications

This is needed to virtualize the control equipment (such as PLCs) onto the platform to
reduce hardware costs and increase flexibility

R12 The platform shall be compliant with POSIX standards
whenever applicable

To ensure portability of applications

R13 Critical real-time tasks should inform their worst-case
execution time, period, deadline

To enable the allocation of the necessary resources to the critical tasks to meet their
deadlines

R14 The fog nodes shall be able to run data analytics at the
edge

To avoid sending all data to the cloud and to support fast optimization and better FCP
resource utilization

R15 The platform shall allow for secure retrieval,
verification, and execution of software updates

The ability to update has proven itself to be a critical component in the continuous effort
to build secure systems
composition and model extension and refinement through the
design process.

Similar to object-oriented programming, components can be
efined in two levels; component types and component imple-
entations. Component types define the interface of a compo-
ent, including its external features, e.g., input and output ports.
hile component implementation specifies the internal elements
f a component, such as sub-components and their interactions
hrough connections. Both component types and component im-
lementations can extend other component types or implemen-
ations, and each component type can have zero or multiple
mplementations. Component definitions should be structured
ithin AADL Packages to declare a namespace for them.
Furthermore, AADL allows attaching typed values to the com-

onents via properties to specify constraints or characteristics
oncerning the architecture elements. Several standard properties
re available such as timing properties for threads, MIPS capac-
ty for the processors, bandwidth capacity for bus components.
ost of AADL analysis tools understand and use these standard
roperties. It is also possible to define a new set of properties
hrough AADL Property Sets. We use this extensibility mechanism
o introduce new properties for specification and configuration
f time criticality applications, fog nodes, TSN networks and
witches in the FORA reference architecture model.
There are several tools developed for the AADL language to

acilitate modeling and analysis of embedded systems from dif-
erent perspectives such as real-time performance, resource con-
umption, security, etc. The most well-known one is OSATE [58],
hich is an open-source Eclipse-based modeling framework. In
ddition to the modeling environment for the AADL language,
t provides a set of plug-ins for validating and analyzing the
rchitecture of the system under study. We have chosen to use

ADL as the core language for modeling FORA FCP reference

5

architecture due to its non-ambiguous semantics, human read-
ability, extensibility, and availability of a large set of analysis
tools, e.g., scheduler, model checker, flow latency analysis, etc.,
as OSATE plug-ins.

We have developed the FORA AADLs models based on the
standard AADLs components; we have also extended previously
proposed meta-models. For example, we have extended the AR-
INC653 module [59], an AADL annex, which defines virtual pro-
cessor and virtual buses and targets safety-critical real-time sys-
tems, to model hypervisors and address the virtualization and
partitioning requirements of the FORA FCP.

As mentioned earlier, FORA has developed a set of Technology
Bricks, including a set of methods and tools, e.g., to configure
different elements of the FORA FCP platform, such as network
topology and routing design [60], streams and task schedul-
ing [61]. We integrate these tools as plug-ins into the OSATE
modeling environment in order to facilitate the platform con-
figuration and validation of the FCP use cases. In addition, the
models can be analyzed through a set of OSATE-specific plug-ins
developed for analyzing safety-critical real-time systems and can
be transferred to set up the configuration of the target systems
thanks to the Ecore code generation and model transformation
mechanisms [62].

Let us illustrate the main concepts of AADL using a simple
system consisting of a sensor, an actuator, a computation plat-
form, and an application that consists of two critical control tasks.
Fig. 3 presents the architecture of this system as an AADL system
component that contains all the system’s component instances.
This system component represents the top-most level system,
which provides the root of the architecture tree, and it must
be instantiated to conduct architecture analysis. The sensor and
the actuator are modeled as two individual systems with one

port to send or receive data. The application is modeled via two
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Fig. 3. An illustration of the main AADL modeling concepts used in this paper. System components are: An FCP (shown with ‘‘Platfrom’’), A sensor (shown with
‘‘Devices.Sensor’’), and an actuator (shown with ‘‘Devices.Actuator’’).
processes, which each host one thread; P1 generates data, and
P2 consumes the data. Thread components model the active part
of an application, and they should be contained in the process
components which model the address spaces that contain the
threads. We model the platform as an abstract system with two
ports for the connectivity purpose to the sensor and actuator,
one processor, and a bus to connect them. Abstract components
are partially defined components that can be refined during the
modeling process. They are especially useful when defining a
model as a reference architecture. We choose to use partitioning
in order to isolate the execution of the critical tasks on the
Processor. Therefore, we model the partitions via two virtual
processors introduced by the ARINC653 extension to model a
dedicated scheduling domain inside a processor. We use AADL
actual processor binding, depicted via blue arrows, to map the
processes to the partitions and the partitions to the Processor.
For simplicity, we hide the binding visualizations from the AADL
diagrams presented in this paper.

4. FORA Fog Computing Platform reference architecture model

The proposed FORA FCP architecture is described in the fol-
owing three sections from three perspectives: (1) fog computing
evices (fog nodes) and the communication among fog nodes,
ee Section 4.1, (2) the mechanisms and techniques for resource
anagement, orchestration and configuration, see Section 4.2
nd (3) services for dependability, analytics and security, see
ection 4.3.
An overview of the high-level conceptual architecture is shown

n Fig. 4. The foundation of the FCP is the Fog Node (FN). In
any applications, including industrial automation and robotics,
everal layers of FNs with differing computation, communication
nd storage capabilities will evolve, from powerful high-end FNs
o low-end FNs with limited resources. Researchers have started
o propose solutions for the implementation of FNs [5,6] and fog
ode solutions have started to be developed by companies [6,
,63]. In our case, FN is equipped with a Commercial Of-The-
helf (COTS) multicore processor (MCP), accelerators, such as
PGAs, for machine learning, and advanced wired and wireless
etworking capabilities. The FN utilizes its advanced network-
ng capabilities to interact with its environment that includes
ensors, actuators, other FNs, and remote Cloud facilities. The
nitial goal of the IEEE 802.1 TSN Task Group [8] was to provide

iming guarantees for demanding applications such as those in

6

the automotive area. Thus, IEEE 802.1 TSN is the ideal technology
choice for the fog node’s southbound connection. A TSN switch
can be part of the fog node, as is the case in the automotive
area, or may be a separate device, as is typically the case in
the industrial area. The vision with TSN is to provide a supe-
rior technical solution based on open standards. TSN guarantees
bounded latency communication between the fog node and its
environment. This guarantee enables the re-location of real-time
critical tasks from the machine to the fog node. Furthermore,
industrial wireless technologies, e.g., WirelessHART or 5G, enable
communication with mobile entities or Cloud Facilities in case of
remote FN installations, e.g., on offshore oil rigs.

When mixed-criticality functions share the same MCP, they
are separated in different virtual machines (partitions) enforced
using hardware-supported virtualization [64], based on hypervi-
sors, such as PikeOS [65], ACRN or Xen. The FCP hosts a diverse
set of applications with mixed-criticality requirements belonging
to both OT and IT domains. The applications are distributed over
multiple resources, e.g., low-end FNs integrated in machines,
high-end FNs hosting multiple applications of mixed-criticalities,
or in the Cloud. This is realized through: A runtime environ-
ment and means to orchestrate different applications; cross-layer
resource allocation, allocating resources efficiently in volatile sce-
narios, taking into account different types of resources and a
number of non-functional requirements, e.g., latency, cost, se-
curity, sensitivity of data; configuration mechanisms and tools,
which provision resources such that industrial applications meet
the dependability requirements, functioning correctly even in the
presence of faults, requiring hence dynamic reconfiguration of
computation and communication resources. We build on exist-
ing open source software stacks for the edge, e.g., OpenStack
for the Edge. The Fog middleware will also build on applica-
tion layer protocols such as MQTT-SN [66] and CoAP [67] for
northbound communication and TSN and OPC UA for southbound
communication.

We model the FORA FCP elements in a multi-layered approach,
which consists of four layers, namely, Core, Software, Hardware,
and Platform. The core layer represents the elements at a very
abstract level. The Software and Hardware levels enrich the Core
layer elements with the software and the hardware components.
Finally, the Platform level composes and encapsulates the soft-
ware and hardware components defined for each element at the
Core layer into a single component that can be used to model a

Fog Computing Platform.
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Fig. 4. An illustration of the main components of the FORA Fog Computing Platform.
.1. Fog node and communication

The FN envisioned in FORA comes with an Intel x86-64 or
RM64 COTS MCP that implements hardware virtualization ex-
ensions, such as Intel’s VT-x and VT-d, Second Level Address
ranslation (SLAT), and Single-root I/O Virtualization (SR-IOV).
ardware virtualization extensions allow the hypervisor to host
nmodified guest operating systems in VMs. Therefore, Intel VT-
(and its equivalent on ARM64) introduces an additional mode
f operation with highest privileges to the instruction set ar-
hitecture (ISA) that allows native execution of most sensitive
nstructions [68]. Intel’s VT-d (and equivalent extensions on ARM)
nable device passthrough that is granting a VM exclusive secure
ccess to a PCI-e device. SR-IOV brings hardware support for
haring a physical PCI-e device with multiple VMs by offering
o-called virtual functions. A chipset and PCI-e device with SR-
OV support allows sharing, e.g., a network card with multiple
Ms, whilst guaranteeing isolation between the VMs. We do not
equire each FN having all of the just mentioned hardware exten-
ions and features. The set of required features highly depends
n its applications. Therefore, we differentiate three classes of
Ns, which together make up the basis for the Fog Computing
latform. Note that the boundaries between the classes and their
equirements are fluid:

• Class-1: FNs operating in very close proximity to machines
and robots consisting of a multitude of sensors and ac-
tuators. The FN takes over critical hard real-time control
tasks running in real-time VMs, hence it utilizes suitable
COTS MCPs that come with less computational power yet
a higher degree of determinism. Furthermore, the FN de-
ploys a statically partitioned hypervisor, such as PikeOS [65],
in order to fulfill strict timing requirements of its VMs.
Southbound, the FN communicates via typical industrial
field busses and/or TSN with OPC UA for non-critical com-
munication. Northbound, thus in connection to other FNs,
we leverage traditional Ethernet and TSN with machine-
to-machine (M2M) protocols such as OPC UA and the ISO
standard Message Queuing Telemetry Transport (MQTT).

• Class-2: FNs operating on the factory floor level. The FN
does not take over critical control tasks, yet it can run soft
real-time tasks, such as non-critical control, real-time data
acquisition, data analysis, and data pre-processing. There-
fore, the FN comes with a more powerful COTS MCP and
a high degree of connectivity, including wired as well as
wireless means of communication. The FN’s hypervisor must
be more dynamically configurable, such as ACRN or Xen,
in order to be able to adapt to changes on the factory
floor during runtime. However, soft real-time tasks might
still be placed in statically configured VMs. An example for
7

a class-2 FN is the Nerve MFN100 product from TTTech
Computertechnik AG running the Xen hypervisor [63].

• Class-3: FNs operating on the factory or enterprise level.
The FN collects operational data from all entities on the
factory floors, either for sophisticated data analysis and pro-
cess optimization, for long-term storage, or for forwarding
data to the cloud. This requires a high degree of com-
putational power and network throughput as provided by
typical server processors and Gigabit Ethernet or even op-
tical fiber since the FN effectively acts as cloud gateway.
Southbound communication still involves TSN and OPC UA
whereas northbound communicates is solely based upon
TCP/IP and MQTT. The hypervisor must manage the FN’s
hardware resources dynamically and if need be even allow
for over-provisioning of resources. Furthermore, integration
with cloud services must be straightforward. Therefore, we
use hypervisors that can usually be found in typical cloud
environments, such as Xen or KVM.

Each FN utilizes hypervisor technology. A hypervisor is a low-
level software layer that provides the abstraction of VMs to
operating systems. A VM is a set of virtual resources such as, vir-
tual CPUs, main memory, virtual I/O devices, or virtual time. The
hypervisor manages the mapping of virtual to physical resources
of all VMs it is hosting while guaranteeing strict isolation between
its VMs. This allows a hypervisor to partition its hardware and run
mixed critical applications isolated in dedicated VMs. Isolation
does not come for free: State-of-the-art hypervisors for hard real-
time applications, henceforth referred to as class-1 hypervisors,
statically partition their resources, such as processor cores and
time, main memory, and I/O devices, before runtime in order to
achieve strict temporal and spatial isolation between VMs. As a
result of their static configuration, class-1 hypervisors lack the
flexibility to add, remove, and migrate VMs during runtime which
make them less suited for more dynamic Industry 4.0 use cases.
To that end we introduce a second class of hypervisors, namely
class-2 hypervisors, that provide a good balance of temporal and
spatial isolation and flexibility by utilizing mode changes [69] and
compositional scheduling theory for the analysis of hierarchical
scheduling [70], that is the scheduling of real-time tasks on vir-
tual CPUs that in turn are being scheduled on physical cores of a
MCP. Finally, there are FNs that take over high-level management
tasks that require a high degree of flexibility. Therefore, they
must be able to dynamically create VMs, migrate, and destroy
VMs depending on the current task sets and their respective
processing demand. We refer to these as class-3 hypervisors.

Furthermore, there are concepts that have to be considered for
all three classes of hypervisors, such as the notion of a global time
base that requires precise clock synchronization of FNs including
VMs and hypervisors.
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Fig. 5. FORA fog node design overview.
Fig. 6. FORA fog node hardware architecture.
.1.1. AADL models
We have modeled the components discussed in the previous

ection using AADL. The FCP is composed of a FN hardware
latform and a virtualization solution, which can support both
ypervisors and containers. The FN hardware platform has to be
eployable in a wide range of industrial scenarios and support the
xecution of a variety of real-time system classes with different
iming requirements [68]. An overview of the FN’s design is pre-
ented in Fig. 5 and an illustration of the proposed FN’s hardware
rchitecture using AADL is presented in Fig. 6.
As mentioned, we utilize a hypervisor to guarantee tempo-

al and spatial partitioning of the fog node hardware platform,
ee ‘‘Hypervisor’’ component in Fig. 5. The hypervisor provides
irtual machines or partitions (see ‘‘Partition1’’, ‘‘Partition2’’, and
‘Partition3’’ components in Fig. 5) each of which runs their own
perating system (OS). A privileged partition (see ‘‘Partition0’’
omponent in Fig. 5) per fog node is in control of multiplexing
8

access to shared devices by providing virtual devices. A virtual de-
vice consists of a frontend and a backend component whereas the
frontend component, e.g., the virtualNetwork component, runs in
an unprivileged partition and communicates with the backend
component, e.g., the virtualNetworkBackend, in the privileged
partition. We provide virtual devices for the I/O interface and the
network interface. They connect via PCI to the fieldbus or the
internal TSN switch of the FN hardware platform, as shown in
Fig. 6.

The processor of the platform is envisioned to be an inter-
changeable component that can feature either a COTS MCP such
as the Intel Atom shown in the CPU component in Fig. 6 or
a more specialized real-time multi-core system able to provide
bandwidth guaranteed core-to-core communication, time-pre-
dictability and static worst-case execution time analysis [69].

A fundamental aspect of Fog Computing is networking, that is
why the proposed FN features three communication interfaces.
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or the communication paradigm, we propose the usage of TSN
s it has been identified as the upcoming standard for real-
ime communication in Ethernet networks. It allows for mixed-
riticality bounded latency communication, by separating traffic
nto priority classes. The arbitration of the traffic classes oper-
tes according to a schedule. To synchronize the schedule TSN
mploys a network-wide clock synchronization protocol, namely
EEE 802.1AS, that allows for sub-microsecond precision. Subse-
uently, the platform provides a TSN Ethernet switch device (the
SNCard component in Fig. 6) that enables the FN to communi-
ate deterministically over Ethernet but also acts as an infrastruc-
ure node providing switching capabilities. A wireless TSN card
the WirelessCard component in Fig. 6) allows for deterministic
ireless communication. Wireless TSN is envisioned both for
iFi 7, more specifically IEEE 802.11be [71] and 5G [72]. Both
f these standardization efforts, IEEE 802.11 and 3GPP, cover in
etail industrial use cases for wireless communication.
Finally, the platform provides a fieldbus interface, as a compat-

bility feature, to enable communication with common industrial
evices and actuators. Special consideration is taken in the pos-
ible difference of the time domains between the TSN switch
nd the wireless TSN. The wireless TSN card is responsible for
hannel access for all wireless devices with a shared medium
ithin a network under strict requirements on reliability and
imeliness following different protocols such as contention-based
rotocols, contention-free protocols, and hybrid protocols [73].
oreover, this component combined with a TSN card is to ex-
hange data for the hybrid wired–wireless connections. Here, we
onsider a hybrid protocol TDMA–NOMA (Time Division Multiple
ccess–Non Orthogonal Multiple Access) that can help to reduce
nd-to-end latency as well as to increase reliable communication.
or example, with such an approach, IIoT sensors transmit the
ollected data using TDMA, where one node transmits per time
lot, and NOMA is used to allow multiple nodes to transmit in
he same time–frequency resource block. See [74] for a discussion
f advantages, disadvantages and myths about NOMA in this
ontext.

.2. Resource self-management, orchestration and self-configuration
echniques

The FORA FCP reference architecture provides the means for
esource self-management, orchestration, and self-configurations.
rchestration helps to align the resource demands of applications
nd the resource supply of different fog nodes with each other,
.e., to avoid that single applications utilize fog nodes in a greedy
ay [31]. Instead, resources are composed, i.e., combined with
ach other. It is the goal of the FORA FCP reference architecture
o make sure that the overall system landscape is well-balanced
nd that all applications are provided with the necessary compu-
ational resources (via fog nodes). For this, it is taken into account
hich requirements the applications have, e.g., if they have real-
ime demands or not. Based on these demands, the orchestration
nd resource management capabilities of the fog nodes compute
olutions for task scheduling and resource allocation. In gen-
ral, orchestration and self-configuration techniques need to be
rovided on the system-level (i.e., for the fog nodes), and also
ake into account the networking perspective [75]. Importantly,
esource allocation and task scheduling are not done on a single
evel, e.g., separately just at the edge of the network or just in
he cloud. Instead, the FORA FCP provides cross-layer resource
llocation, so that resources from the edge of the network to the
loud can be exploited if necessary and based on the demands of
he applications.

As it is state-of-the-art in fog solutions, resource allocation is
ot done for fixed settings, but explicitly takes into account the
9

volatility of fog landscapes, where nodes may enter or leave a
landscape (or a network) at any point of time, and where the
connections between nodes may also change during runtime [76].
For the resource allocation and task scheduling, functional and
non-functional requirements are taken into account. The latter
includes quality-of-service aspects like latency or security, but
also the occurring cost of a particular resource allocation and task
scheduling plan.

Resource allocation and task scheduling provide loosely-
coupled functionalities, i.e., different methods and algorithms
might be integrated into the FORA FCP, and it is even possible
to provide transition mechanisms from one method/algorithm
to another [77]. In contrast to other fog architectures, the FORA
FCP explicitly foresees that fog landscapes may be organized
in different ways, with hierarchical vs. fully decentralized land-
scapes being the two most extreme ways to organize a fog
landscape [27].

While hierarchical landscapes are today the state of the art,
fully decentralized landscapes more closely mirror the basic ar-
chitecture of the IIoT. However, since most approaches to re-
source allocation and task scheduling are based on a hierarchical
fog, novel approaches for decentralized landscapes need to be
developed. To automate the distribution of applications and ex-
ploitation of computational resources in a fog landscape, the
FORA FCP foresees that configuration tools are able to set up
the single fog nodes based on the outcomes of the resource
allocation and task scheduling computations, as well as further
requirements.

Furthermore, for many of the functionalities mentioned here,
it is necessary to monitor the nodes, in order to know their status.
Hence, the FORA FCP provides the means to integrate monitors on
different levels, e.g., for the cores or single tasks. Since fog (and
IoT) landscapes are inherently volatile, faults may occur at any
point in time. In order to be able to mask or mitigate failures in
a fog landscape, the FORA FCP allows to allocate applications to
new computational resources, even during the runtime of the sys-
tem. For this, mechanisms which allow to store and re-establish
the state of applications are necessary. Last but not least, fog
landscapes should be able to be integrated with non-fog (legacy)
systems. Especially in Industry 4.0 scenarios, OPC UA plays an
important role [78], while the Data Distribution Service (DDS)
is an important technology applied in real-time systems [79].
Therefore, the integration of fog nodes with OPC UA and DDS will
be needed so that the FORA architecture does not provide a closed
system, but is able to integrate other technologies to augment the
fog, if meaningful.

4.2.1. AADL models
The proposed fog platform has four major building blocks: (i)

the hypervisor that can host OSes, virtual machines or containers,
(ii) services for allocation and management of local resources
and other essential services (e.g., TSN management), (iii) con-
figuration services for the fog node, and (iv) the orchestration
component that enables communication and resource sharing
among fog nodes.

As mentioned, the platform is also capable of hosting contain-
ers, which are a lightweight virtualization alternative, e.g., Docker
is a widely-used container technology for operating-system-level
virtualization [80]. Containers benefit from the fact that they
share kernel functions of their host (i.e., they do not require
separated operating systems running in each of the containers
unlike virtual machines). This introduces the following advan-
tages: (i) rapid boot time of containers, (ii) higher computa-
tional performance, and (iii) lower overhead. Containers offer
self-healing mechanisms (i.e., prompt restarting of faulty contain-
ers) and mechanisms to increase dependability (containers can
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Fig. 7. Overview of FCP’s resource management, orchestration and configuration components.
un in multiple instances). The main drawback of container-based
irtualization is weaker resource isolation and potential lower
evel of security [81]. Although containers have typically been
eployed on top of a rich OS, our FCP is also able to support them
n top of separation kernels such as PikeOS; recent research has
lso extended containers with real-time capabilities.
In the following paragraphs, we provide a detailed description

f the components used in the AADL model from Fig. 7. The Node
onfiguration component provides the means for configuration
hich are used by the Node Management component to control
he necessary settings for tasks. For example, the Control Con-
iguration component provides the configuration for temporarily
eparating tasks with different criticality levels including the
ontrol tasks that have the highest criticality level, see [82] for
ore details. Additionally, the Node Management component
ontains a Security Management component. This component is
esponsible for the configuration of critical security mechanisms,
uch as the configuration of key distribution infrastructure. The
omponent employs the system call instrumentation as proposed
n [83] to monitor the entire system at runtime, which provides a
onfiguration that determines the security functionality available
o applications and services. It enables nodes to communicate
ith each other and external services securely, by defining proto-
ols that can be used to uniquely identify peers, and to establish
ecure mutually authenticated communication channels. It also
10
defines a set of acceptable data encryption algorithms for con-
fidential data storage, in accordance with predefined security
levels. These then are available as primitives to application ser-
vices, enforcing node-wide consistent data security. Further, it
manages the setup of firewalls, enabling host protection.

The AppSupport component provides the orchestration func-
tionality to the FCP and consists of three different components,
i.e., resource management, node discovery, and gateway. Each
component contributes to the efficient use of the available re-
sources in the network and the connection with different middle-
wares. A special focus lies in providing a deployment strategy for
mapping the application’s tasks to fog nodes, the discovery of the
network topology, and establishing the communication between
networks.

Resource management aims at deploying new applications on
the FCP by creating a collaboration between fog nodes where each
has the possibility of making local decisions regarding what tasks
of the application to execute, see [84] for more details. This com-
ponent consists of two distinct modules (i) a resource allocation
module and (ii) a network monitoring module. The latter is set
as a requirement for the FCP and aims at monitoring the network
to provide the communication latency between different nodes.
The former makes use of two new modules, i.e., the deployment
module and the decision module, being responsible for finding
a satisfiable mapping on the FCP for the deployed application.
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esides the internal modules, the resource management compo-
ent requires extra information about the fog nodes as well as
roviding access to different middlewares found in the network;
nformation that is provided by collaborating with the remaining
ppSupport components, i.e., nodeDiscovery and gateway.
The nodeDiscovery component provides the resourceManage-

ent component with the candidate nodes for deploying appli-
ations. To do that, this component integrates node discovery
lgorithms such as [85], that store a set of neighbor nodes which
an be used for distributing an application among various dis-
ributed fog nodes. Thus, nodeDiscovery is an essential part of
he AppSupport component because it discovers all the fog nodes
f the system, and makes their resources available to the re-
ourceManagement component which handles the deployment
f the applications. Upon the discovery of new nodes, this com-
onent selectively chooses which nodes become neighbors. This
s done based on proximity measurements (e.g., using round-
rip time or hop count [85]) in order to enable the execution of
pplications with low communication delay and therefore overall
xecution time. While currently based on a best-effort approach,
he component could also implicitly take into account execution
imes of applications based on user requirements. Furthermore,
he selection of neighbors determines the overall communication
mong the nodes, which can be either hierarchical or peer-to-
eer. The hierarchical communication type enables the nodes to
ommunicate in a tree-like topology which is based on layers.
n the peer-to-peer communication type, the nodes communicate
ased on a flat model which does not use layers [86]. The selec-
ion of the communication type is based on the requirements of
he applications.

The gateway enables a fog node to communicate beyond its
wn network by connecting OPC UA and the DDS. After the
esourceManagement component deploys the application in a fog
ode, the user needs to configure the gateway by using a config-
ration file. The gateway configuration is static and is dependent
n the configuration of the OPC UA and respectively DDS config-
ration. The OMG gateway specification document [87] provides
urther details about the gateway and its internal functioning.

The CoreMonitor component monitors the core status. This
omponent is a piece of software in charge of informing the
ocalResourceManagement that a core is still alive. It is assumed
hat the core fail mode is not running. The implementation can
e done in different ways, but in all of them, it must run from
he privileged partition, as it must be aware of which partition
s running and in which core. The core status information is
ssential to take local and global decisions in case of failure.
The PartitionMonitor component monitors the partition status.

his component has a similar function to the CoreMonitor, but
ith the objective of monitoring the partitions. We assume here
hat the partition fail mode is a total failure, that means, the parti-
ion does not run anymore. Since this component must be aware
f each existing partition and its status, it also must run from the
rivileged partition. This component can be part of the CoreMon-
tor if the according monitoring objects are strictly connected,
owever, the information sent to the LocalResourceManagement
as to be different. The TaskMonitor component monitors the
ritical task execution status and progress. Although the hy-
ervisor can guarantee temporal and spatial task and partition
solation, in a COTS MCP, without previous detailed knowledge
f all the tasks that can run at the same time in different cores,
t is not possible to forecast how the inter-core interference
elays the execution of the tasks due to the physical memory
haring among the cores. To this end, similar to the proposed
pproaches such as [88], we implement the PartitionMonitor
omponent for managing the shared resources on the platform.

o guarantee critical task deadlines in this kind of hardware

11
platform this component has to be implemented in such a way
where it provides information to the LocalResourceManagement
and LocalResourceSchedulerInter-Partition so that it can suspend
non-critical partitions to avoid missing critical task deadlines.

The LocalResourceManagement component is in charge of
gathering the information from the components described above,
namely: CoreMonitor, PartitionMonitor, and TaskMonitor. This
component is also in charge of communicating the status of
the resources to the following components: (i) LocalResource
SchedulerIntra-Partition, (ii) LocalResourceSchedulerInter-
Partition, and (iii) ControlConfiguration. This component must
also run from the privileged partition since it has to have access
to the other components in the entire platform.

Considering that the critical tasks and partitions are sched-
uled by the ControlConfiguration component, the LocalResource-
SchedulerInter-Partition is in charge of finding feasible non-
critical partitions scheduling according to the workload and lo-
cally available partitions. Taking into account the dynamic be-
havior of the task requests in a typical industrial automation
scenario, this component is also in charge of controlling the non-
critical partitions at runtime, suspending, running or changing the
corresponding CPU occupation time. To schedule the partitions,
this component has a strong interaction with the LocalResource
SchedulerIntra-Partition.

Working tied to the LocalResourceSchedulerInter-Partition,
the LocalResourceSchedulerIntra-Partition component is respon-
sible for finding a feasible non-critical task schedule according to
the workload. As the previous component, to meet the dynamic
requirements of a real industrial automation scenario, it is able to
find a new schedule at runtime. This component is independent of
the scheduling policy and it is possible to have different policies
applied for different partitions.

4.3. Applications and services

The FCP has to be both agile and dependable. IT and OT worlds
have different focus on dependability attributes such as safety
and security, which have to be reconsidered in the converged
IT/OT FCP. Regarding safety, when a system has the potential
to harm humans or the environment (or is intended to mitigate
or manage such harm), decision-makers require safety assurance
evidence that it manages the risks acceptably. The conceptual
basis for certification is that the evidence anticipates the possible
circumstances that can arise from the interactions between the
system and the environment, to show that these interactions
do not pose an unacceptable risk. Hence, the FORA FCP inte-
grates approaches, developed as platform services, for assuring
the safety and security of the FCP. In addition, the FN’s proximity
to the sensors and machines is an opportunity for improved data
analytics, which, together with monitoring, improve agility when
they support fast decision-making and resource allocation at the
edge.

Security and privacy in OT lags behind IT, as the current
state of practice is to use ‘‘air gaps’’, physically isolating sensitive
equipment (locked doors and guards) from unsecured networks,
which, with the introduction of standard IT systems no longer
works. For IT, security and privacy are important, together with
reliability, but safety is not considered. The convergence of IT and
OT brings new security challenges, exposing previously isolated
OT to new types of attacks [89]. Fog Computing introduces new
security and privacy challenges that need to be addressed in
order to promote such a new computing paradigm. Fog Com-
puting inherits the Cloud Computing security issues, but these
are more critical due to the safety issues of industrial systems.
With the exception of very few preliminary papers, research is
still immature [90].
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Fig. 8. Overview the FCP’s services.
Big Data and data analytics drive novel applications in Indus-
try 4.0 [91]. Sensors and machines generate huge amounts of
data: industrial data is growing faster than any other sector and
manufacturing stores more data than any other sector. Access
to industrial data is difficult because of the different data repre-
sentations used by sensors and machines, data variety, and data
velocity, e.g., the speed at which data is generated. Many applica-
tions enable data analytics by storing historical data in the Cloud,
and running Machine Learning (ML) algorithms to gain insights
that lead to value creation. Existing ML solutions from, e.g., IBM,
Google, Microsoft, do not address industrial automation because
large amounts of data cannot be moved to the Cloud due to
bandwidth constraints, and with OT there are severe computation
and storage limitations as we get closer to the machines. There is
limited work in applying ML in real-time and on distributed data
streams, e.g., distributed learning [92].

Regarding application development, the Cloud Computing pro-
gramming model typically follows a Service-Oriented Architec-
ture (SOA) model. Cloud applications are written using interacting
(micro)services, developed as containers which rely on scalable
Platform-as-a-Service (PaaS) [93]. Although there are many PaaS
solutions for the Cloud, no such solutions exist for the Fog, where
applications may reside in a continuum involving the machines,
in the Fog Nodes, and the Cloud. In addition, critical applications
with real-time properties cannot be modeled.

To address these challenges, our AADL platform model in-
cludes the following services, depicted in Fig. 8: resource mon-
itoring services with extended insights into the individual nodes
and network, and safety and security monitoring for recovering
from failures and attacks; a new framework for edge analytics
that goes beyond the traditional cloud-based post-collection an-
alytics model that decouples data acquisition from knowledge
extraction, improving thus the resource-efficiency of the FCP and
IIoT end-devices, enabling real-time decision making, intelligent
filtering, and resource prioritization; services for securing the
FCP, based on the concept of Security-by-Contract and compliant
with IETF MUD (Manufacturer Usage Description) [94], in order
to be applied to the vast majority of IIoT devices, addressing the
heterogeneity challenge.

4.3.1. AADL models
The AADL components related to the discussion in the previ-

ous section are mainly of two categories, (1) Components that
are essential for assuring the required levels of dependability
attributes such as timeliness, safety and security and typically im-
plemented in the platform, and (2) components that specifically
12
target the application services and enable a coherent method-
ology for implementation of them. Category-1 involves some of
the components that have already been explained as part of
Sections 4.1 and 4.2. We will contribute in designing as well
as extending their scope w.r.t. enabling fault tolerance, timeli-
ness, security and safety aspects. In this subsection, we focus
on the components that are of Category-2, i.e., implementing
application-level services in Fig. 8.

We are developing appropriate intrusion detection techniques
to secure the execution of mixed-criticality applications on the
fog node. The intrusion detection module collects system events,
such as hardware performance counters and system calls [83].
It analyzes them with Machine Learning techniques to detect
anomalous patterns of execution. The solution is non-intrusive,
since it observes the monitored software’s interface without di-
rect interaction and hence will not affect the predictability in any
adverse manner. The intrusion detection performance overhead
is limited due to the embedded environment properties. Because
it is deployed locally on the target, its execution should not
interfere with other system applications, which potentially have
safety requirements and deadlines. It also must not be reachable
by other untrusted entities to preserve its own security. There-
fore, the secure integration of intrusion detection module in a
partitioning based system design for embedded mixed criticality
environments is also essential. These techniques are implemented
partly in the hypervisor to have direct hardware access (see Fig. 7)
and partly in the Security component in Fig. 8.

Due to the increasing focus on TSN in the provision of pre-
dictable network traffic, we are developing a fault detection,
isolation, and recovery (FDIR) method to be applied in the context
of TSN communication and task’s executions, similar to [95]. The
method will reside in the middleware and will monitor tasks
executions and network communication traffic. It applies fault
detection and identification techniques, and enables appropriate
recovery mechanisms in case of faults. IEEE 802.1CB TSN stan-
dard provides fault-tolerance by means of stream redundancy
i.e., splitting streams across disjunctive links to maximize prob-
ability of correct reception in the presence of link faults. We are
also exploring the feasibility of a Fault Tolerant Communication
Configurator, which is capable of configuring the network stream
transmissions in an optimal manner to ensure that resources are
conserved while at the same time, fault-tolerant guarantees are
provided. Similar to the security techniques, these fault-tolerance
techniques are implemented both at lower levels (within the
hypervisor and RTOSes) and in the ErrorDetectionAndRecovery
service depicted in Fig. 8.
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Fig. 9. An example of modeling a critical application with three critical tasks using FORA AADL models.
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A fog platform brings the computing power from the remote
loud-side closer to the edge devices to reduce latency, as the
nprecedented generation of data causes ineligible latency to
rocess the data in a centralized fashion in the Cloud. In this
ew setting, edge devices with distributed computing capabil-
ty, such as sensors and surveillance cameras can communicate
ith fog nodes with less latency. Furthermore, local comput-

ng (at edge side) may improve privacy and trust. Hence, we
ntegrate a new method to decompose the data processing, by
ividing them between edge devices and fog nodes, intelligently.
e apply active learning on edge devices (see [96] for more
etails); and federated learning on the fog node which signifi-
antly reduces the data samples to train the model as well as
he communication cost, similar to [97]. However, this work has
een used to implement a Predictive Maintenance framework,
hich uses distributed machine learning, where the distributed
rivers and the centralized server jointly (collaboratively) train
ne global model. An Example of using machine learning methods
or Predictive Maintenance can be found in [98]. Typically, the de-
entralized drivers placed in different locations, generating data
hat captures the local information instead of global information
nd they train their local models based on partial knowledge.
he aggregation step at the server-side enables the information
haring between drivers and server to obtain one model with
verall knowledge. Then, the server sends the aggregated model
ack to drivers. The edge analytics service is implemented in the
istributedMachineLearning component from Fig. 8.
Regarding mixed-criticality application modeling, critical and

on-critical applications can be defined in FORA FCP architecture
s AADL process and thread components. Non-critical applica-
ions can be defined as standard process and thread components
n AADL, whereas critical applications should be defined as exten-
ions of CriticalApp and CriticalTask components introduced by
ORA AADL models, which are extensions of process and thread
omponents. Critical applications may be control applications
ith quality-of-control requirements, safety-critical applications
ith dependability requirements (e.g., have to be replicated for

ault-tolerance reasons) or real-time applications with soft or
ard real-time properties. All of these applications are real-time
nd are modeled using the typical sporadic task model from
eal-time theory [99], where each periodic task has a period
minimum inter-arrival time for sporadic tasks), a worst-case
xecution time and a deadline. We opted to use the timing
roperties proposed by SAE in the Timing_Properties property set,
hich have been developed for capturing such timing require-
ents. Fig. 9 shows an example of modeling a critical application
ith three critical tasks. The AADL source code for this application
ith the detailed specifications for one of its tasks is presentedin
isting 1 to show how the timing properties of an application and
task can be specified.

1 process SpeedControl extends FORA::core::
CriticalApp

2 features
3 sens_data : in data port sens_data {arinc653::

sampling_refresh_period => 10 ms;};
4 signal : out data port signal {arinc653::

sampling_refresh_period => 10 ms;};
5 properties
 l

13
6 FORA::core::CriticalApp::SIL => 3
7 end SpeedControl;
8
9 process implementation SpeedControl.i

10 subcomponents
11 filtering : thread filtering;
12 ...
13 connections
14 c0 : port sens_data -> filtering.data_in;
15 c1 : port filtering.data_out -> control_law.

data_in;
16 ...
17 end SpeedControl.i;
18
19 thread filtering extends FORA::core::CriticalTask
20 features
21 data_in : in data port sens_data;
22 data_out : out data port filter_data;
23 properties
24 dispatch_protocol => periodic;
25 period => 10ms;
26 deadline => 10ms;
27 compute_execution_time => 100ms..200ms;
28 end filtering;

Listing 1: Part of an AADL source code to specify a critical
application SpeedControl from Fig. 9

5. Evaluation

Section 3 has outlined the methodology used for the definition
and evaluation of the proposed Fog Computing Platform reference
architecture. In this section we report the results obtained when
modeling, implementing and evaluating a Conveyor Distribution
System Use Case (UC1 mentioned in Section 3). The details of
UC1 have been presented in [12]. Here, we extend that work to:
show how the AADL from Section 4 can be used to model the
UC; show how the FORA Technology Bricks can be plugged into
this AADL model to implement a prototype; evaluate the ability
of successfully implementing the UC using the proposed reference
architecture. Use Cases UC2 and UC3 mentioned in Section 3 have
also been used to evaluate the proposed architecture, as reported
in [13,14], but without a focus on AADL modeling.

In UC1, a conveyor distribution system is used to distribute
packages from an inventory to different destinations. The con-
veyor distribution machine is well-known and widely used in
inventories for the automatic distribution of packages. Let us
consider a typical machine, as depicted in Fig. 10a. The machine is
fed with packages from one side and reads the tag of the received
package. It gets the destination of the package by accessing a
database with the read tag and drives the package towards the
destination from one of the other sides of the machine.

Conveyor distribution uses electric motors and drives. Electric
rives alter the frequency and voltage of an electric motor’s cur-
ent for different rotation speed, torque, and position of its shaft
sing the implemented real-time software controlling the power
lectronic circuits [100]. An electric drive in an industrial setting
s shown in Fig. 10b. Industrial controllers (e.g., PLCs) sitting on
he ‘‘Control level’’ of the automation pyramid determine the
equired output of electric motors which sit on the ‘‘Machine
evel’’ (see Fig. 1). The electric drives placed close to electric
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Fig. 10. Overview of Conveyor belt-based distribution system demonstrator for UC1.
Fig. 11. Configuration of a fog node in the UC’s architecture.
otors on the ‘‘machine level’’ convert the determined output
o a corresponding electric current to drive the electric motors.
hus electric drives produce massive and critical data about the
ontrolling machinery. Sending all the data to other computing
odes over the Internet or the control network would consume
andwidth and it is also discouraged by the factory owners for
onfidentiality concerns. Hence, in this use case, we extend the
lectric drives to serve as fog nodes, leading to new offerings like
rogrammability, local analytics, and connectivity to customer
louds.

.1. UC model

We model the UC’s architecture with AADL by using the FORA
ADL components from Section 4 and refining them to reflect the
C requirements. We model positioning and tag-scanner sensors
s Sensor.Position and Sensor.tag, respectively; and the electric
otors as Actuator.PowerModule and Actuator.ElectricMotor . We
odel the TSN switches as Swith.TSN_SW and configure them
sing FORA AADL property set developed for configuring a TSN
14
network, which allows specifying routing specifications and mes-
sage schedules for a switch as system properties. We model the
fog nodes as FogNode.FN and configure them by refining the soft-
ware and hardware subcomponents of the FogNode model. Thus,
Fig. 11 presents the AADL model of a Fog Node. The FN consists
of a hardware platform which has a multicore processor, a TSN
enabled network switch and I/O to an external power module
for generating the electric current and a software stack which
has a hypervisor, a middleware, and partitions with dedicated
operating systems (real-time OS for running control applications
and Linux/Windows-based OS for running best effort applica-
tions) and application layers, respectively. The fog nodes are
assumed to run mixed-criticality applications including control
applications for controlling electric motors. The mixed-criticality
applications are temporally isolated using partitions which are
managed by the hypervisor i.e., PikeOS in this UC which supports
static partition tables (see [82] for more information about par-
tition tables and enforced isolation). Finally, we model the UC
platform as a system that consists of the required instances of the
aforementioned components connected via TSN. Fig. 12 presents
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he resulted AADL architecture model for the UC. As it can be
een, the architecture consists of three switches (SWi, denoted
n the following text with the notation W), five fog nodes (FNi,
enoted with E), five position sensors and one tag scanner sensor
all denoted with S). Each fog node is connected to the electric
otor (mi) it controls.
We model the applications using AADL as discussed in Sec-

ion 4.3.1. For space reasons, instead of showing the full AADL
odel, we instead use a table where we present the properties
f the applications, see Table 2. In this UC each fog node Ei runs
control application which receives a message from its corre-

ponding sensor Si and controls the belt to drive the package by
etermining the required corresponding electric motor’s output.
he fog node also runs an electric drive application which sets
he electric motors current for the external power module via I/O.
hus, the UC has five control applications (one for each fog node),
nd each control application gets one stream as input and sends
ts output 10 ms after receiving the input (we assume that the
utputs have fixed offset from the inputs and have no latency).
The details of the applications are shown in Table 2 where

he column 1 shows names of the applications. The applications
to 5 are control applications for controlling the speed of elec-

ric motors, and hence have control performance requirements.
ach application has a criticality Level (L)—that can represent the
afety Integrity Levels (SIL) of the application, with values from
, non-critical, to 4, highest criticality [101] (see the column 2
n Table 2), a number of tasks (shown in the column 3) with the
ame period (P) (shown in the column 4), and a computation cost
C) which is the sum of worst-case execution times of the tasks
ver their period (shown in the column 5). We assume that all
he applications (including the control applications) interact via
set of streams which have hard real-time requirements, and all
he streams are prioritized concerning their criticality. The details
f the streams (size S column 7), period T column 8, and routing
olumn 9 are shown in Table 2. We assume that all links have the
ata rate of 100 Mbps. Listing 1 presents the AADL specifications
or one of these applications (speed control).

.2. Implementation model of network traffic for QoC

The UC’s architecture is configured to guarantee the timing

equirements of all the network streams on TSN, including the e

15
ontrol applications’ streams which have more stringent timing
equirements. The configuration is composed of Gate Control Lists
GCLs) for the TSN network switches which represents the mes-
age schedules, and is provided by the ControlConfiguration com-
onent (see Section 4.2.1). The GCLs regulate the network traffic
uch that functional timing requirements of network streams
.e., stream deadlines, and their non-functional timing require-
ents are met. The control performance requirements of control
pplications is defined as Quality-of-Control (QoC) (see [61] for
ore details). We evaluate these requirements by analyzing the
CLs.
We employ a Constraint Programming-based schedule syn-

hesis strategy, implemented as an OSATE plug-in, aiming at
aximizing the QoC and satisfying the deadlines of network
treams, proposed in [61] to generate the GCLs. Thus, all the
treams have been successfully scheduled, i.e., none of the dead-
ines is missed. The configuration has also provided the minimum
elay and jitter for the streams, resulting in a good control per-
ormance. The column 10 (last but one) in Table 2 shows the
aximum end-to-end delay (ED) of streams. We used Jitter-
ime [102] to simulate the behavior of the control applications
hich reports an average value of 0.009 for the QoC of all control
pplications, i.e., a good control performance (see [61] for the
xact cost function).

.3. Implementation model of hypervisor partitions and task sched-
les for QoC

Mixed-criticality applications sharing the same platform have
o be isolated from each other, otherwise a faulty lower-criticality
ask may interfere with a higher-criticality task, leading to failure.
n the UC’s architecture, each fog node uses a deterministic hyper-
isor for virtualizing the applications by providing deterministic
ccess to shared resources via a static configuration table. The
eterministic access realizes the temporal isolation for the appli-
ations with different levels of criticality via partitioning aiming
t protecting the applications from the possible interference.
The ControlConfiguration component (see Section 4.2.1) uses

he heuristic algorithm proposed in [61] to allocate a partition for

ach criticality level of the assigned applications, and to decide
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able 2
C1: applications, streams and evaluation results.
Application L Tasks P (ms) C (µs) Relevant stream S (bytes) T (ms) Routing ED (µs) ED after TESLA (µs)

m1 control 3 3 10 0.35 S1 data 700 10 S1 → W1 → E1 60 1241
m2 control 3 3 10 0.35 S2 data 850 10 S2 → W1 → E2 72 1481
m3 control 3 3 10 0.35 S3 data 600 10 S3 → W2 → E3 52 1111
m4 control 3 3 10 0.35 S4 data 950 10 S4 → W2 → E4 80 2407
m5 control 3 3 10 0.35 S5 data 500 10 S5 → W3 → E5 44 921
Package status 2 2 10 0.3 m2 state 1100 20 E2 → W1 → E1 152 1911
Motor break 3 3 10 0.35 – – – – – –
Table break 2 1 8 0.31 – – – – – –
SCADA 1 4 10 0.28 E5 data 920 10 E5 → W3 → W2 → E4 254 2389
User interface 1 3 6 0.28 – – – – – –
Database access 1 8 15 0.59 S6 data 1200 30 S6 → W3 → W2 → E3 200 3091
Weight report 2 5 15 0.47 – – – – – –
Warning 2 2 10 0.26 E4 data 700 50 E4 → W2 → E3 260 1751
Destination set 1 3 8 0.56 m2 set 850 50 E3 → W2 → W1 → E2 144 2221
Label print 1 4 12 0.59 – – – – – –
mapping of the partitions to cores of the fog nodes. The compo-
nent generates schedule tables for partitions and for tasks inside
each partition considering the determined mapping of tasks to
the partitions and cores. A schedule table si repeats periodically
with a system cycle and captures the start and finishing time
of tasks (or partitions for partition tables). The generated task
schedules are optimized for QoC of control applications which are
assumed to have high-criticality levels.

We evaluate the performance of the configuration in providing
temporal separation and preserving QoC for control applications.
We assume that each fog node has a dual-core processor. The
ControlConfiguration component has determined the mapping of
partitions to the cores of fog nodes. The component has also
successfully scheduled the partitions and all the tasks inside the
allocated partitions. The results show that none of the tasks has
missed its deadline and all of the tasks are isolated concerning
their criticality levels by mapping them to the partitions with
same criticality levels. The results show that the cores have aver-
age utilization value of 57.2% and the maximum utilization value
is reported as 73.6% for the core 0 of the fog node E3. Furthermore,
he control application has a good control performance, which is
valuated with JitterTime [102] that calculates a value of 0.4103
or the QoC (cf. the cost function from [82]).

.4. Addressing extensibility for dynamic fog applications

The UC consists of statically allocated critical applications to
un on the platform. These applications are statically mapped
o the cores and partitions, and scheduled inside the mapped
artitions at design time. The UC’s architecture is also capable of
unning dynamic non-critical applications which can migrate in-
nd-out of the fog nodes over time and be removed/replaced by
ther such applications. This capability, known as extensibility,
s realized in a way that the design time configuration is not
odified which is a necessity for keeping the performance level
f the statically allocated critical applications as well as avoiding
he safety re-certification of critical applications [103].

The extended configuration is provided by the NodeConfigura-
ion component (see Section 4.2.1) at runtime and schedules the
ynamic non-critical applications on their arrival. To allow more
ynamic non-critical applications to be added at runtime without
egatively impacting the performance of existing applications,
he design time configuration needs to be optimized for extensi-
ility which is realized by distributing the idle time of the design
ime schedules. The idle time spaces of these schedules are used
o accommodate tasks of dynamic applications. Less-deviated
dle time duration enables the fog nodes to accommodate more
ynamic non-critical applications.
The design-time extensible schedules are generated using the

ethod proposed in [103] and implemented as an OSATE plug-in.
16
We evaluate the extensibility of the UC’s schedules by optimizing
the generated schedules in Section 5.3. We use the algorithm
introduced in Section 5.3 to schedule the tasks from Table 2. The
algorithm generates schedule tables for the cores of the fog nodes
in the UC. We take the schedule s8 (representing the schedule
table on the second core of fog node E4) and depict it in Fig. 13a
(as ‘‘BASE’’) using a Gantt chart, where the boxes are execution
slices, and the arrows show task preemption. The execution slices
are denoted with the task’s number. All the tasks have the same
criticality level and are scheduled inside the same partition. While
‘‘BASE’’ is not optimized for extensibility, we give an example
for optimized version of the same schedule described in Fig. 13c
as ‘‘OPTIMIZED’’. We use the same extensibility metric as pre-
sented in [103], which reports the values for deviation of idle
time duration as 0.0014 and 0.0003 for ‘‘BASE’’ and ‘‘OPTIMIZED’’
respectively, showing that ‘‘OPTIMIZED’’ has less-deviated idle
time duration, i.e., it is more extensible.

We consider a scenario where engineers want to add four
dynamic non-critical applications to the fog node E4. These appli-
cations represent logging applications. Each dynamic application
composed of a single task which has a deadline constraint equal
to its period. The applications’ periods are 6, 8, 10, 12 ms and
their computation costs are 17%, 13%, 15%, 13%, respectively.

Thus, we extend the schedules ‘‘BASE’’ and ‘‘OPTIMIZED’’ by
adding the dynamic applications 1–4 to the schedules. The result-
ing schedules are depicted in Figs. 13b and 13d as ‘‘BASE-EXT’’
and ‘‘OPTIMIZED-EXT’’ respectively. The results show that the
dynamic application has successfully scheduled in ‘‘OPTIMIZED-
EXT’’ i.e., none of the applications has missed its deadline, whereas
some deadlines are missed in ‘‘BASE-EXT’’, for example, the task
of the application 1 has missed its deadline at 12,900 ms. The
configuration provided by Node Management component shows
promising results in successful adding of dynamic applications
without modifying the existing schedules, and is able to bring
extensibility to the schedules of fog nodes.

5.5. Addressing security requirements in TSN

The UC’s architecture requires secure communication for con-
fidential messages to guarantee confidentiality, integrity of the
data, and authenticity of the remote party. In the UC, the platform
blocks any attempt at communication to endpoints it cannot
authenticate.

Since TSN does not provide security mechanisms, we em-
ploy the Timed Efficient Stream Loss-Tolerant Authentication
(TESLA) [104] to guarantee the security requirements in our
proposed architecture. TESLA is a low-resource multicast authen-
tication protocol which relies on synchronized schedules of tasks

and messages which is implemented in the SecurityConfiguration
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Fig. 13. Four schedule tables (variants of s8 generated in Section 5.3) for extensibility example: The colored boxes are execution slices; the transparent boxes show
he partitions; the red bordered boxes show missed-deadline tasks. The arrows show preemption and the hatched boxes shows occupied time slots. (For interpretation
f the references to color in this figure legend, the reader is referred to the web version of this article.)
omponent of the AADL model. The authentication protocol uses
D5-MACs of 16 Byte Length and 16 Byte keys. The configuration
rovided by the component consists of a dedicated security
pplication composed of two tasks, for each network message
hich is scheduled to run either at the message’s reception or
ransmission depending on the end system that the application
s running on.

We scheduled the UC’s streams from Section 5.2 using the
ESLA method to evaluate the security mechanism of the UC’s
rchitecture. The results are shown in Table 2. The Columns
0 and 11 (last two) exhibit the maximum end-to-end delay
ED) of streams before and after adding the security mechanism
espectively. The security configuration provided confidential au-
henticated communication by using MD5-MACs and authentica-
ion keys at the expense of increasing the end-to-end delay of
essages by 1723 µs on average.

. Conclusions and discussion

This paper has presented a Fog Computing Platform (FCP) ref-
rence architecture aimed at Industrial IoT applications. The ar-
hitecture was defined and evaluated within an overall methodol-
gy that was driven by requirements collected via three IIoT use
ases. The definition of the FCP reference architecture has been
one via AADL models. We have presented an overview of the
odels and the entities of the FCP within three main themes: (i)
omputing device and communication, (ii) resource management
nd orchestration and (iii) application and services. We have
iscussed the reasoning and analysis behind the definition of the
CP and listed the major components and the technology bricks
eveloped to implement a design.
The proposed reference architecture was evaluated on a con-

eyor belt distribution system demonstrator, showing the capa-
ility to successfully model and implement IIoT applications. As
uture work, the FORA AADL models will be further refined and
ligned to standards (e.g., IEEE 1934 OpenFog).
A Fog Computing Platform brings several benefits to Industrial

oT applications: End-users benefit from machine interoperabil-
ty and resource elasticity. The FCP scales on demand to meet
17
business needs and connects all assets of end-users to enable
data capture. End-users will be able to connect the machines,
the Fog Nodes and the Cloud, allowing optimal resource alloca-
tion, driving costs down and value up. Dependable middleware
and interoperability protocols make data available for innovative
applications, e.g., data-driven decision-making, data analytics.

The FORA FCP provides services needed to rapidly develop, se-
curely deploy and efficiently operate industrial applications. The
software platform provides standardization across multiple silos
and enables businesses to quickly take advantage of operational
and business innovations.

The FCP infrastructure meets stringent industrial regulatory
requirements (safety and security), which cannot be met by pub-
lic Clouds. This reduces the security risks with networked ma-
chines. The new virtualized FCP handles security incidents such
that the critical operations are not impacted, reducing downtime.
New security services help end-users deploy secure industrial ap-
plications and detect abnormal or suspicious behavior, recovering
from attacks and reducing losses. Data analytics services offer
insights, enabling decision-making to increase asset utilization,
deploy servicing and maintenance resources efficiently to lower
repair costs, plan performance improvements.
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