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Abstract Flow separation, as an aerodynamic phenomenon, occurs in specific conditions. The

conditions are studied in a wind tunnel on different airfoils. The phenomenon can be delayed or

suppressed by exerting an external momentum to the flow. Dielectric barrier discharge actuators

arranged in a row of 8 and perpendicular to the flow direction can delay flow separation by exerting

the momentum. In this study, a mathematical model is developed to predict a parameter, which is

utilized to represent flow separation on an NACA0012 airfoil. The model is based on the neuro-

fuzzy method applied to experimental datasets. The neuro model is trained in different flow condi-

tions and the parameter is measured by pressure sensors.
� 2017 Production and hosting by Elsevier Ltd. on behalf of Chinese Society of Aeronautics and

Astronautics. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/

licenses/by-nc-nd/4.0/).
1. Introduction

Many aerodynamic phenomena can be demonstrated in both
experimental and computational flow dynamics; however,
based on the nature of experimental and computational flow,

results might be slightly different. This is a great advantage
if there is a way to make a connection between experimental
and computational methods. One of the best examples is

‘‘CFD in the loop” modeling.1 Learning algorithms are one
of the methods of modeling. The method represents a mathe-
matical model based on experiments carried out in specific sit-
uations, let’s say a state space. A state space describes setting

of input parameters in an experiment. The mathematical
model is credible in the state space. Some learning methods
can also predict the behavior outside the state space. These

models predict the behavior of a system like an oracle.2 Exper-
imental flow dynamics needs state space declaration based on
the goal of the experiment and nature of the phenomenon. By
contrast, computational flow dynamics is mostly based on flow

behavior simulation utilizing governing equations on flow,
such as Navier-Stokes. The equations should be generalized
in a desired space. The equations might need linearization in

subspaces, both stable and unstable subspaces, and generalize
simplified differential equations.3 In some conditions, lin-
earization is not suitable and might make the equations inva-

lid. In these conditions, additional correlation methods are
preferable. For more complex dynamics, the same procedures
for linearizing ordinary differential equations utilizing a corre-
lation matrix are considered.4
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On the other hand, separation is an aerodynamic phe-
nomenon that occurs in many engineering applications.5 The
phenomenon is sometimes desired and the goal is to make it

happen, but sometimes, it is undesirable and should be con-
trolled. The control process of an aerodynamic phenomenon
is another field of science called flow control. Flow control is

divided into two distinct divisions, open-loop flow control
and closed-loop flow control. There are various control param-
eters involved in separation.6 By controlling each of these

parameters or combination of these parameters, various solu-
tions are presented for the separation control problem. An
open-loop control solution is very common, which is mostly
carried out with mechanical actuators.7 An example is the flaps

utilized in airplanes during take-off and landing phases to con-
trol separation and augmentation of the lift force. The flaps
delay separation by exerting a momentum to the flow.8

Open-loop control doesn’t have adequate control authority
due to the fact that there is no feedback from the system.
Closed-loop flow control focused on enhancing control

authority is presented. There are different types of actuators
that can be utilized in closed-loop control. Using dielectric bar-
rier discharge actuators is a method for flow control with desir-

able features in some aspects.6 Many researchers have studied
active flow control utilizing dielectric barrier discharge actua-
tors. Active separation control leads to a great enhancement
in the performance of air vehicles.

In order to actively control an aerodynamic phenomenon,
the flow system should be identified.9 Several studies have been
carried out exclusively to identify the dielectric barrier dis-

charge model. The model is mostly numerical, like those
expressed by Mohammadreza10 and Sjoberg et al.11 The prior
identifications need to know the physics of every part of the

system, which might be unknown. A slight change in the model
of one part can cause the system to be misidentified. This leads
to the use of techniques where no precise knowledge of the

physics of the system is needed. Such modeling of a system
is carried out by different methods. Neural network is a
method based on the history of the system’s behavior.1 The
Local Linearization Model of tree (LoLiMot) method and

the Nonlinear AutoRegressive with eXogenous (NARX)
method are two common methods of modeling neural net-
works.5 By defining an appropriate state space, the LoLiMot

and NARX methods offer a model that not only perfectly fits
the system but also is attached to the knowledge of the sys-
tem’s physics. The methods have a wide range of applications

from Single Input Single Output (SISO) to Multi Input Multi
Output (MIMO) systems.5 Several recent researches on active
flow control are based on these methods. A similar method
was utilized by Tian et al. to identify separation on

NACA0025. In the study, model definition and separation
identification (usage of the model) are simultaneous. The
method presented is called online.12 The NARX method was

used by Dandois et al. to develop a model for those with
unsteady flow. Separation control with synthetic jet actuators
utilizes the developed method.5 It is obvious that model defini-

tion and usage of the model are not simultaneous. These types
of methods are called offline.

In the present study, a flow model which is defined as offline

is utilized to identify separation. Once separation is identified,
an appropriate momentum is exerted to flow by Dielectric Bar-
rier Discharge (DBD) actuators to suppress separation. The
appropriate momentum is calculated according to the system’s
history. A modified LoLiMot is utilized in model definition.

A LoLiMot tries to fit a linear function in subspaces of a

state space and present a model by combining linear functions.
A modified Takagi-Segno LoLiMot method was presented by
Kalhor et al. to reduce iteration and make the model more

accurate.13 The modified model was utilized in the presented
flow modeling.

In this study, the modified LoLiMot method is utilized to

identify the flow separation behavior of NACA0012 airfoil
affected by open-loop momentum exertion of dielectric barrier
discharge arrays. An array of 8 dielectric barrier discharge
stimuli is utilized to control flow separation. The modified

LoLiMot model generates an Multi Input Single Output
(MISO) model for flow separation and actuators array in
open-loop momentum exertion. The goal is to present a simple

nonlinear model of the system which can be utilized in con-
troller design for flow control.

2. Flow model and control law

As mentioned earlier, a modified LoLiMot method is utilized
in this study to develop a model for flow behavior. In order

to train the modified LoLiMot method, a valid state space
should be defined. The state space definition is based on the
knowledge of the flow system. For the first step, the modified

LoLiMot method is explained.
Takagi, Segno, and Kank have carried out several

researches in the field of neural networks. Their researches
led to a learning algorithm based on fuzzy logics.13 The algo-

rithm follows a pattern to optimize speed. The pattern is one of
the most speed-optimal learning patterns. Creating flexible
subspaces makes the Takagi algorithm fast enough to be uti-

lized in speed-sensitive applications.14

The method creates membership functions so as to convert
datasets in a subspace into a series of blocks. This means that

each of the subspaces is divided into series of blocks. The algo-
rithm assumes that each newly created block is a subspace and
repeats the procedure. The algorithm repeats the same proce-

dure until a predefined condition is met. In each block, the
algorithm tries to fit a linear function. The step is successful
if there is a linear function fitted in each block. In the function
fitting stage, the fitted function might have a slight stability

error.
The stop condition for the subspace creation algorithm is

the two criteria discussed above, linear function fitted in each

block and predefined stable error for the fitted function.14 In
the final stage, there is a linear function in each of the sub-
spaces created. In other words, it can be said that the algo-

rithm is a locally linearized method. A function is defined by
accumulation of the locally linearized functions. The domain
of the defined function is split into various subspaces in which
the defined functions are linear. In order to meet the stop con-

dition, a game rule tries to optimize the local linear function
creation and subspace creation. Along with the subspace divi-
sion process, the game rule controls the function fitting so as to

minimize the error. The game rule comprises different algo-
rithms such as merge, split, and division to create a new game
rule in each block. This means that in each of the subspaces,

there is a game rule.
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The process of creating the game rule continues until the
index error, from the first step to the last step, experiences
no serious loss. It is obvious that the algorithm looks like a

tree. It starts from the trunk (state space) and divides into ser-
ies of branches (subspaces), and each branch is divided into
other series of branches. Branches with a serious error index

are cut. Therefore, there are only a few paths left from trunk
to some branches. Branches with the least error are the desired
paths. This is the reason why the method is called a tree model.

The game rule checks the loss in an error index. Any serious
loss in an error index demonstrates that there is a great gap
between the main subspaces and the current ones. The great
gap between subspaces demonstrates that locally linearized

functions in subspaces are highly angled in the border of two
subspaces. The high angle means that the data points in sub-
spaces are not united and this is due to the creation of sub-

spaces. Game rules and subspaces creation according to
membership functions is illustrated in Fig. 1.14 The M index
demonstrates the current step where subspaces and game rules

are created. Number of data blocks are fed to the algorithm
represented by b and superscripted with 1 to N. In each step
of the algorithm a subspace denoted by C is created and

indexed to M which is mentioned before, representing current
step of the algorithm. LLM illustrates the game-rule control-
ling subspaces by means of cost function / to form a locally

linearized function of ŷi for each subspaces from 1 to M.

Finally, the output ŷ forms by summation of ŷi from 1 to M.
The final function takes x 2 Rn (an array of n elements) as

the input and y 2 R is the output. The model represents an
MISO system. The Takagi algorithm defines a general algo-
rithm for neural networks. The method utilized here is a mod-

ification of the algorithm presented by Kalhor et al. Here, the
modified LoLiMot is changed in a way that fits our usage. The
data fed to the algorithm are in the form of

ðx1; x2; x3; . . . ; xn; yÞ.
In order to train the model, a series of data points should be

fed to the learning algorithm. More data points mean more
accurate models. The number of datasets fed to the system is

denoted by Q. The pairs of input-output datasets are
ðxq; yqÞ; q ¼ 1; 2; . . . ;Q. On the other hand, each dataset has

an observer which observes the nonlinear function; therefore,

q represents observers and the number of datasets. The algo-
Fig. 1 Game rules and subspaces creation in learning

algorithm.14
rithm will be repeated A times, which represents the iteration
which is denoted by i. For each iteration, a cost function is
defined to represent the error. The cost function h should be

minimized. The function is calculated by a weighted least
square technique. The cost function is illustrated as

hnþ1;i ¼ ZT
ði;nþ1Þ � Zði;nþ1Þ

� ��1

� ZT
ði;nþ1Þ � Yði;1Þ ð1Þ

i ¼ 1; 2; . . . ;A

The cost function is a function of inputs and output of the

system. In the equation of calculation of h, the matrice Z is
defined as a matrice with A rows and nþ 1 columns. The
matrice is illustrated as

Zi;nþ1 ¼ ½x1; x2; x3; x4; y�; i ¼ 1; 2; . . . ;A ð2Þ
Each row of matrice Z represents a dataset related to each

iteration. On the other hand, the first n columns of the matrice

represent inputs and the last column represents the output of
the system. The last column of matrice Z is described as Y.
The definition of matrice Y is illustrated as

Y ¼ Zð:;nþ1Þ ð3Þ
There are two options for the algorithm to set. The first

option is the number of neurons. The final error of the system
is decreased as the neuron number is increased. An increase in
the neuron number takes more calculation time. There is a trade-

off between calculation time and final error. The second option
in the algorithm is the divergent factor denoted by c. The diver-
gent factor controls the loss of an error index in game rule cre-

ation. The output of the algorithm is C, L, h and u matrices.
Matrice C represents the final subspaces, which completely

fits the stop condition of the algorithm; therefore, the dimension

of matrice C is n� A. The length of each subspace is stored in a
related element of matrice L. As mentioned earlier, matrice h

represents the cost function values. In order to form the final
locally linearized function, some mathematical operations

should be carried out. For the first step, matrice m is defined as

lð1;iÞ ¼ e
�c

Xði;1Þ�Cð1;iÞ
Lð1;iÞ

� �2
� �

� e
�c

Xði;2Þ�Cð2;iÞ
Lð2;iÞ

� �2
� �

� � � � � e
�c

Xði;nÞ�Cðn;iÞ
Lðn;iÞ

� �2
� �

;

i ¼ 1; 2; . . . ;A ð4Þ
The dimension of matrice m is 1� A. Matrice m, defined ear-

lier, is utilized to form matrice u. Matrice u, with a dimension
of 1� A, is defined as

ui�1 ¼
l1�iPA
j¼1l1�j

; i ¼ 1; 2; . . . ;A ð5Þ

Matrice u defined here and the matrice cost function h

which is defined before are utilized to define a coefficient

matrice B. Matrice B is a ðnþ 1Þ � 1 size matrice. The B

matrice is defined as

B ¼ h� u ð6Þ
Each element of matrice B is a coefficient for an input;

therefore, by using x as the input, the final locally linearized
function which describes the system behavior becomes

y ¼ B1x1 þ B2x2 þ � � � þ Bnxn þ Bnþ1 ð7Þ
The mathematical relation defined here is the final locally

linearized model for the system fed to the algorithm. The mod-
ified LoLiMot algorithm described earlier is utilized to model a
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system without any exact knowledge of physics of the system.
The system, here, is the flow around an NACA0012 airfoil. In
order to use the learning algorithm, as described earlier, the

inputs and outputs of the system should be known. On the
other hand, suitable datasets should be fed to the system.
For the first step, general physics of the system will be

presented.
Any system has some parameters which can affect the sys-

tem’s behavior, and there are some parameters which can be

observed via the behavior of the system. Input and output
parameters are important for modeling a system but these
parameters are not sufficient. In general, the rate of changes
of both inputs and outputs can describe the system. In some

systems, the rate of change of input parameters affects output
parameters, but in others, the rate of change of inputs only
affects outputs. It means that the rate of change of inputs just

changes the settlement time of outputs and has no effect on the
final output values.

In the studied case, separation, system response or outputs

has two parts. The first part is the transient response of the sys-
tem, and the second part is the permanent response of the sys-
tem, which is observed after passing a specific time from an

input changing instance. To be precise, whenever there is any
change in inputs, the clock ticks and a transient response of
the system is observed. After passing a certain time, let’s say
settlement time, the transient response is vanished and a per-

manent response is observed. An illustration of the descrip-
tions is presented in Fig. 2. In the figure, a change happens
to the system such that initial state of the system, denoted by

Old state, changes to a completely different state that no mat-
ter what is the state, denoted by New state. This happens by a
change in input at exactly T = t0, which shows an initial

moment in the system space. It takes some time for the system
to respond to the input change and settles with the New state.
The exact time in which the system completely settles in shown

by T = t1.
It is obvious that any change in inputs causes a change in

the output state. The rate of change of inputs affects the tran-
sient response in the system. With reference to the description,

in a flow separation phenomenon, studying the rate of change
of inputs only helps to study the transient response. In order to
study the permanent response of the system, there is a need to

study the input parameters. The effects of the Rate Of Change
(ROC) are obvious in Fig. 3.

In wind tunnel testing, the test situation is described with

Reynolds number.15 The definition of Reynolds number is
shown as
Fig. 2 Transient response of system.
Re ¼ Vc

t
ð8Þ

In the definition of Reynolds number, V stands for the flow
speed in meters per second, c stands for the airfoil chord length

in meters, and t is the kinematic viscosity of the fluid. While
studying the flow around an NACA0012 airfoil, it is clear that
the chord length is constant. The flow velocity and kinematic

viscosity are the parameters directly affecting the Reynolds
number.

A closer look at the kinematic viscosity, t, or sometimes

called momentum diffusivity, shows the ratio of the dynamic
viscosity l to the density of the fluid q. According to this def-
inition and to identify the key parameters affecting the kine-
matic viscosity, the dynamic viscosity can be assumed to be

constant in the flow system, but the density is a function of
temperature and pressure. In summary, the flow velocity, pres-
sure, and temperature are the final parameters affecting the

Reynolds number.
The separation phenomenon is impressed by the Reynolds

number and angle of attack of the airfoil. Considering this,

the final parameters to consider while studying separation
are angle of attack, flow velocity, temperature, and pressure.
It is noteworthy that in this study, temperature is assumed to

be constant and this is due to the test conditions.
The study is related to flow separation controlled by dielec-

tric barrier discharge actuators. The physics of the actuators
and their interaction with flow separation is not intended in

this study; therefore, the physics is negligible, although it is
known that momentum transfer because of ionic wind causes
energy injection to the flow. To control the dielectric barrier

discharge, parameters like electric wave shape, electric wave
frequency, and peak-to-peak voltage of the electric wave affect
the actuator momentum creation.

A sinusoid wave is generated with various peak-to-peak
voltages and various frequencies of excitation. In summary,
the frequency of excitation and peak-to-peak voltage are the
parameters affecting dielectric barrier discharge.

In order to observe the changes in the output of the system,
a sensing methodology should be defined. There are different
methods for observing flow separation, such as hot film, pres-

sure distribution, etc. In this study, pressure distribution is uti-
lized for observing the changes of the system output.

The pressure distribution is acquired by some sensors

installed in different positions on the airfoil. In each sampling,
pressure values in different positions of the airfoil are known.
In this case, there is an array of pressure. To have a numerical

scale for analyzing separation, the pressure array should be
converted to a scalar value. In aerodynamics, a scalar param-
eter is defined utilizing the pressure distribution array. The
parameter is calculated by integrating a pressure coefficient.15
Fig. 3 Effects of ROC.



Table 1 Input and output parameters.

Sign Type Parameter

VP-P Input Peak to peak voltage

g Input Frequency of excitation

a Input Angle of attack

u Input Flow velocity

S Output Pressure parameter

Fig. 4 Schematic of system.

Fig. 5 Locations of pressure holes.

Table 2 Actuator array design parameters expressed in

milimeters.

Parameter Value

Width of upper electrode wu 3

Width of lower electrode wl 6

Overlap l 0

Gap width layout k 18

Distance from pressure hole line 15

Thickness of upper electrode tu 0.02
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The pressure coefficient is obtained by the pressure distribu-

tion in different positions of the airfoil. The definition of pres-
sure coefficient is illustrated as

Cp ¼ P� P1
0:5q1V

2
1

ð9Þ

The P parameter shows the pressure values acquired by
pressure sensors. P1, q1 and V1 show the pressure, density,
and flow speed in the free stream, that is in the front of the

wind tunnel, respectively. The values are constant for all pres-
sure sensors. These values are measured utilizing a device
installed in the front of the wind tunnel. The array of pressure

values is converted to a pressure coefficient utilizing Eq. (8).
Having pressure coefficients and pressure sensor installation
positions, a scalar parameter, S, is defined by

S ¼
Z 1

0

Cpðx=cÞdx
c

ð10Þ

S is called pressure parameter in this study. The input and out-
put parameters of the systems is presented in Table 1. Using
the defined inputs and output, a schematic of the system is

illustrated in Fig. 4.
In this study, the system is an MISO system, which is suit-

able for the modified LoLiMot algorithm. The datasets are

obtained by changing inputs and sampling output of the sys-
tem. The final locally linearized model of the system is a func-
tion like

S ¼ fða; u;V; gÞ ð11Þ
According to the modified LoLiMot algorithm, the linear

function is illustrated as

S ¼ A1 � aþ A2 � uþ A3 � Vþ A4 � gþ A5

Ai ¼ gða; u; V; gÞ
�

ð12Þ

Thickness of lower electrode tl 0.04

Dielectric thickness td 0.15

Length of plasma formation Dx 40

Total number of stimuli array n 8

Wing span covered 140
3. Experimental setup

The system input and output parameters have been described
earlier. In order to train the learning algorithm, sets of exper-
iments should be performed to obtain required datasets. The
experimental setup of the system is discussed firstly and the
experimental scenario is discussed thereafter. The study was

carried out on an NACA0012 airfoil. The airfoil is made up
of wood so as to minimize electrical conductivity for the best
electromagnetic discharge. The airfoil is 45 cm in span and

15 cm in chord. A metal rod connects the airfoil to the setter
in a wind tunnel. In the middle of span, 23 holes are positioned
chord-wise to house pipes for measuring pressure. On the

upper surface, there are 11 holes, and on the lower surface,
there are 12 holes. The positions of the holes are precise and
known. Fig. 5 illustrates the positions of the pressure holes.

Dielectric barrier discharge actuators are configured in an

array of 8 actuators perpendicular to the flow direction. Elec-
trodes and dielectrics are made up of copper and kapton,
respectively. Upper electrodes are connected to each other with

a high voltage cable. The same is true about lower electrodes.
The electrodes are printed on copper and installed on the air-
foil with kapton. The design parameters of electric barrier dis-

charge actuators are presented in Table 2. The pressure pipes
connected to the pressure holes and the actuators installed
on the airfoil are illustrated in Fig. 6.

The pipes are connected to pressure sensors in a sensor box.
A sensor box is located out of the wind tunnel. In the upper
deck of the sensor box, a series of sensors is installed. Each
pressure pipe is hooked up to a sensor. The pressure sensors

are PX-138005D5V manufactured by OMEGA. The outputs



Fig. 8 Wind tunnel test section with airfoil installed inside.
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of the sensors are analog. The analog signal wires are con-
nected to an analog-to-digital converter, also called Data
Acquisition Card (DAC). The DAC is connected to a com-

puter. The DAC is PCI-1713U manufactured by Advantech.
The collection described is responsible for acquiring pressure
data from the pressure holes located on the airfoil and convert-

ing them to machine data. The sensor box containing sensors,
a data acquisition card, and a computer is shown in Fig. 7.

All the experiments were performed in the open circuit wind

tunnel installed in the Dana Aerodynamic Laboratory at Fac-
ulty of Aerospace Engineering, Amirkabir University of Tech.
The wind tunnel has a test section of
100 cm � 100 cm � 180 cm. The wind tunnel fan has a volu-

metric flow rate of 54 m3/s. The divergence angle in the first
diffuser is 3.5� and the diffuser length is 3.5 m. The second dif-
fuser has a divergence angle of 20�, and the disturbances of the

tunnel at speeds of 15 m/s and 35 m/s are 0.27% and 0.24%,
respectively. The tunnel test room has a divergence angle of
0.5� to prevent the growth of a boundary layer. The floor

and ceiling of the tunnel test section also have sheets of Plexi-
glas plates with a dimension of 34 cm � 97 cm and with the
possibility of extension that provides access to the model.

Because of the smaller size of the airfoil compared to that of
the test section and in order to have two-dimensional flow,
two Plexiglas screens with a size of 90 cm � 100 cm and a
thickness of 10 cm on both sides of the airfoil were utilized.

As stated by Selig et al16, in order to have two-dimensional
flow, the length of Plexiglas sheets should be 6 times longer
than the airfoil chord. Fig. 8 illustrates the wind tunnel with

the airfoil installed inside.
The test section has an alpha mechanism which is utilized to

set the angle of attack of the airfoil. Besides, the alpha mech-

anism is utilized as a setter to hold the airfoil in the test section.
On the alpha mechanism, there is a digital indicator for mea-
suring the angle of attack. High-voltage cables are connected

to both actuators and a high-voltage amplifier. The amplifier
converts a sinusoid wave with a low peak-to-peak voltage to
a higher one. The amplification coefficient for the amplifier is
800. It means that at the maximum power, the amplifier con-
Fig. 6 NACA0012 used in experiment.

Fig. 7 Sensor box.
verts a 10 V peak-to-peak sinusoid wave to an 8 kV peak-to-
peak sinusoid voltage. The output wave has approximately

200 W of electrical power. The signal source is created by a
function generator which produces a sinusoid wave with a
10 V peak-to-peak voltage. The function generator is manufac-

tured by Hameg and the model of the function generator is
HMF2525. The peak-to-peak voltage of the source wave and
its frequency are set by setting the function generator using

USB connection. The computer in the sensor box reads the
pressure data and carries out the calculation. The frequency
of excitation, peak-to-peak voltage, flow velocity, and angle
of attack are set in each sampling. A schematic of the experi-

mental setup is illustrated in Fig. 9.

4. Experiments results

As mentioned earlier, there are four input parameters and one
output to the system. In order to train the learning algorithm,
a number of datasets should be acquired. The datasets are in

ðx; yÞ combination, which means that in different situations
of input parameters, the output parameter is acquired. To have
a complete dataset, the inputs should be meshed in a credible

region. More data points make the function more accurate,
and it takes more time to compute. In each mesh node, an out-
put related to the node is needed. The input array for creating

a mesh is illustrated as

a ¼ f5; 7; 9; 11; 12; 13; 14; 15; 16; 17g
u ¼ f15; 20; 25g
V ¼ f0; 2; 2:5; 3; 3:5; 4; 4:5; 5; 5:5; 6g
g ¼ f15; 16; 17g

8>>><
>>>:

ð13Þ

Parameter a, angle of attack, is broken into 10 elements,
parameter u, flow velocity, is broken into 3 elements, parame-
ter V is broken into 10 elements, and parameter g, frequency of
excitation, is broken into 3 elements. According to the input

array, a mesh with 900 nodes is created. For each node, sam-
pling is repeated for 3 times with each time taking 5 s, and the
average output data is saved. The saved data for each mesh

node is fed to the learning algorithm. Finally, the locally lin-
earized model is created. To evaluate the locally linearized
model, a set of experiments was planned. In the experiment,

a situation based on the 4 input elements is set, and the exper-
imental value of the S parameter and the calculated value from
the model are compared. For the first two of the four param-

eters, three different states were defined. For the last two
parameters, two different states were defined. The definitions
are shown as follows:



Fig. 9 Schematic of experiment setup.

Table 3 Experiment scenario for validation.

Experiment

No.

a u V g

1 8 18 3 15

2 8 18 3 17

3 8 18 5 15

4 8 18 5 17

5 8 19 3 15

6 8 19 3 17

7 8 19 5 15

8 8 19 5 17

9 8 21 3 15

10 8 21 3 17

11 8 21 5 15

12 8 21 5 17

13 11 18 3 15

14 11 18 3 17

15 11 18 5 15

16 11 18 5 17

17 11 19 3 15

18 11 19 3 17

19 11 19 5 15

20 11 19 5 17

21 11 21 3 15

22 11 21 3 17

23 11 21 5 15

24 11 21 5 17

25 13 18 3 15

26 13 18 3 17

27 13 18 5 15

28 13 18 5 17

29 13 19 3 15

30 13 19 3 17

31 13 19 5 15

32 13 19 5 17

33 13 21 3 15

34 13 21 3 17

35 13 21 5 15

36 13 21 5 17
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a ¼ f8; 11; 13g
u ¼ f18; 19; 21g
V ¼ f3; 5g
g ¼ f15; 17g

8>>><
>>>:

ð14Þ

Based on the definitions, 36 experiments were planned. For
each experiment, the experimental and calculated values of S
are compared. Table 3 shows the experiments scenario for

validation.
As mentioned earlier, in order to train the learning algo-

rithm, two parameters should be set. The first parameter is

the neuron number and the other is the divergence factor.
These two parameters affect the error index. To set these
parameters, the error index and neuron number should be

compared. The algorithm is trained with the fed data by up
to 100 neurons. The training process is repeated with various
divergence factors. The divergence factor, c, is listed as

c ¼ f2; 3; 4; 5g ð15Þ
Fig. 10 shows the error index. As illustrated in the figure, an

increase in the neuron number causes a decrease in the error
index. It means that a higher neuron number makes a more
accurate model, but it doesn’t mean that the highest possible

number of neurons should be selected. This will be discussed
later. From Fig. 10, an increase in the divergence factor causes
an increase in the error index. This increase is obvious in

Fig. 10.
The divergence factor controls the fitted function in each of

the subspaces. It means how much the fitted function is close

to the datasets. A lower divergence factor means that the func-
tion should be as close as possible to the datasets. It makes the
fitting process harder, because the algorithm should be metic-

ulous in subspace creation. A closer look at Fig. 10 reveals that
the process is not always constant. For some neuron numbers,
the divergence factor doesn’t affect the error index directly but
reversely. The error index experiences a reasonable value in

more than 80 neurons. The neuron number and divergence fac-
tor pairs in which the error index is lower than 0.1 are tabu-
lated in Table 4. The run time for each pair is shown in the

table.



Fig. 10 Error index variation.

Table 4 Acceptable error indexes.

Neuron number Divergence factor Error index Run time (s)

80 2 1.2 183.6

80 3 1.4 183.6

81 2 1.1 183.6

81 3 1.4 183.7

82 2 1.1 183.7

82 3 1.4 183.7

83 2 1.1 183.8

83 3 1.4 1838

84 2 1.1 183.8

84 3 1.4 183.9

85 2 1.1 183.9

85 3 1.4 184

86 2 1.1 184

86 3 1.4 184

87 2 1.1 184.1

87 3 1.4 184.1

88 2 1.1 184.2

88 3 1.4 184.2

89 2 1.1 184.2

89 3 1.4 184.2

90 2 0.9 186.1

90 3 1.4 188.2

91 2 0.9 188.3

91 3 1.4 188.2

92 2 0.9 189.1

92 3 1.4 189

93 2 0.9 190.4

93 3 1.4 189.3

94 2 0.9 190.4

94 3 1.4 189.3

95 2 0.9 190.5

95 3 1.4 190

96 2 0.8 197.1

96 3 1.4 190

97 2 0.8 198.4

97 3 1.4 190.7

98 2 0.8 199.5

98 3 1.4 190.4

99 2 0.8 199.9

99 3 1.4 190.9

100 2 0.8 201.2

100 3 1.4 191

Table 5 Divergence condition.

Divergence factor Neuron number

2 161

3 106

4 292

5 123
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As mentioned earlier, an increase in the number of neurons
causes a decrease in the error index, so it might be wise to
choose the highest number of neurons. When the neuron num-

ber reaches a specific amount for each divergence factor, the
algorithm cannot fit a locally linearized function in the created
subspaces. In this situation, the error index experiences a sud-

den jump. For a given divergence factor, the number of neu-
rons in which the divergence occurs is presented in Table 5.

It is noteworthy that changing the fed datasets changes the

situation for the algorithm to diverge. To show the divergence
of the algorithm, a pair of the neuron number and divergence
factor is chosen. Fig. 11 illustrates the divergence of the algo-
rithm for the pair of (292,4).

According to Table 4, the chosen neuron number and diver-
gence factor pair is (90,2). The value is chosen based on the
table and figures presented, and nine hundred dataset points

were fed to the learning algorithm which is set to have 90 neu-
rons and a divergence factor of 2. In order to be certain about
the learning algorithm error, a graph is drawn to show the

experimental output and the locally linearized function output.
Fig. 12 illustrates the comparison between the two types of
outputs. For proper illustration, the variance of experimental
and model outputs is shown in Fig. 13.

According to Fig. 13, the maximum error of the algorithm
is about 0.09. The error index shows similar values. It guaran-
tees that the learning algorithm has fitted a function correctly.

The graph shows that the maximum value of the S parameter
is approximately 2.1. To make the error index dimensionless, it
should be about 4.2%. This happens when the input data fluc-

tuates, especially while actuators are working to inject momen-
tum. In this occasion, especially when there is an increase in
the peak-to-peak voltage for the input wave of actuators, the

output of the system fluctuates. This is important for optimal
control of separation utilizing dielectric barrier discharge.

To be certain about the credibility of the locally linearized
function representing a model for the system, a series of 36

experiments was carried out. Fig. 14 illustrates the experimen-
tal and model outputs.

In all the experiments, the model and experimental outputs

are close to each other. This certifies the model behavior. In all
the experiment, the variance of the model and experimental
outputs is negligible. This means that comparing the highest

value of S, which is 2.1, the maximum variance is about 1%.
The presented model is credible in the entire defined region
in which the algorithm is trained. In order to study the graph
better, Fig. 14 is converted into the variance of the two output

types, and the variance is dimensionless by the maximum value
of S, which is 2.1, and expressed in percentage. The converted
graph is shown in Fig. 15.

The variance of the outputs is shown in Fig. 15. The max-
imum variance is just less than one percentage of the maximum
value of S. The variance is not constant and sometimes expe-



Fig. 14 Verification experiments.

Fig. 13 Variance of experimental and model outputs.

Fig. 15 Converted graph of variance of outputs.

Fig. 16 S parameter analysis.

Fig. 11 Divergence of learning algorithm.

Fig. 12 Comparison of outputs.
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riences jumps. To be certain about the credibility of the locally
linearized function, for a constant flow velocity, the output of
the model is graphed. In this graph, like other aerodynamic

graphs for airfoils, the S parameter should have increased
and then fallen after the separation based on the angle of
attack. Fig. 16 shows the variation in the S parameter. In
the graph, after an angle of attack of 11, the flow experiences

a separation and the dielectric barrier discharge tries to avoid
the separation.

5. Conclusions

To study a system’s behavior, the behavior should be modeled.
A model of the system means defining the behavior of the sys-

tem utilizing a mathematical equation. There are various meth-
ods for presenting a model for a system. Several researches
have been carried out for developing a method. One of the

most common methods is order reduction of governed equa-
tions. Using some assumptions and reducing orders of mathe-
matical equations, the governed equation is converted into a
simple reduced-order equation which can represent the system.

In this study, a neural network model is utilized in order to
neglect governing equations in a system and simplify the mod-
eling procedure. This method converts a complex system of

airfoil and DBD to a simple function.
The paper shows the presented model and its validity. Even

though the accuracy of the presented model is dependent to the

data that is trained in the model, the validation experiment
reveals that the final error of the model is negligible compared
to experimental results and the presented model is credible

enough. Based on the results, the error index doesn’t change
significantly while increasing the neuron number to more than
160 neurons. Increasing the neurons number from 160 to 280
causes a 0.03 decrease in the error index and simultaneously

increases the processing time. The validation experiment tests
the presented model in a random situation in order to verify
it. The verification test reveals that the error of the presented
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model is 1% in the worst case of the test. The average error of
the presented method is about 0.15%. The biggest problem of
the algorithm is the need of the algorithm to be trained before

being used. It takes a lot of time for the algorithm to create the
model. These are all valid if the sampling of the system is cor-
rect. The sampling procedure should be done in a stable and

continuous situation. Besides, the algorithm can be retrained
during utilization to make it more accurate. More samples
make the results more accurate. It should be noted that in

the retrain process, the algorithm uses all the data points to
be retrained.

The represented method is credible enough to be relied on
in model creation. It is suggested that the game rule should

be modified in order to make the accuracy of the algorithm
independent from the fed datasets. On the other hand, it is sug-
gested to consider other parameters in the learning algorithm.
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