Fogification of electric drives: An industrial use case

Mohammadreza Barzegaranl, Nitin Desai?, Jia Qianl, Koen Tangel, Bahram Zarrin!, Paul Popl, and Juha Kuusela?

'DTU Compute, Technical University of Denmark, Kongens Lyngby, Denmark
2School of Innovation, Design and Engineering, Milardalen University, Visteras, Sweden
3Danfoss Power Electronics A/S, Grasten, Denmark

Abstract—Electric drives are used to control electric motors,
which are pervasive in industrial applications. In this paper we
propose enhancing the electric drives to fulfil the role of fog
nodes within a Fog Computing Platform (FCP). Fog Computing
is envisioned as a realization of future distributed architectures
in Industry 4.0. We identify the system-level requirements of
such an FCP, including requirements that are extracted from the
current architecture of drives, which we consider as a baseline.
These requirements are then used to design a system-level
architecture, which we model using the Architecture Analysis &
Design Language (AADL). We identify the “technology bricks”
(components such as hardware, software, middleware, services,
methods and tools) needed to implement the FCP. The proposed
fog-based architecture is then used to implement a Conveyor Belt
industrial use case. We evaluate the resulting use case on several
aspects, demonstrating the usefulness of the proposed fog-based
approach. By developing the electric drives as fog nodes, that
we call fogification, new offerings like programmability, analytics
and connectivity to customer Clouds are expected to increase the
added value. Increased flexibility allows drives to assume a larger
role in industrial and domestic control systems, instrumenting
thus also legacy systems by using drives as the data source.

I. INTRODUCTION

Digitalization will affect all industries and sectors, with a
potential cumulative value to society and industry of more
than $100tn by 2025 [1]. This paper focuses on the industrial
area, where the worldwide cumulative net value will be $1.7tn
by 2020 worldwide [2]. We are at the beginning of a new
industrial revolution (we will use the term Industry 4.0), which
will bring increased productivity and flexibility, mass cus-
tomization, reduced time-to-market, improved product quality,
innovations and new business models [3].

The infrastructure of the information society is underpinned
by Information Technologies (IT) such as Cloud Computing,
Artificial Intelligence (AI), and Big Data. However, these
technologies are not directly applicable to industrial applica-
tions [4]. The industrial area uses Operational Technologies
(OT) consisting of cyber-physical systems (CPS) that monitor
and control physical processes that manage, e.g., automated
manufacturing, critical infrastructures, smart buildings and
smart cities. These application areas are typically safety-
critical and real-time, requiring guaranteed extra-functional
properties, such as real-time behavior, reliability, availability,
conformance to industry-specific safety standards, and secu-
rity.

Industry 4.0 will only become a reality through the conver-
gence of OT and IT [5], which are currently separated and
use different computation and communication technologies.
Currently, the industrial domains use OT, which is costly,
completely separated from IT, and cannot support Industry
4.0 [5]. IT such as Cloud Computing has gained significant
popularity and we use Cloud-based services on a daily basis
as a commodity. However, Cloud Computing cannot provide
dependability or quality-of-service guarantees, so it cannot
be used for industrial applications. Additionally, technology

paradigms such as Al and Big Data are resource-demanding
and may compromise the performance of industrial applica-
tions under intensive workloads [4]. Thus, they cannot be used
for these applications. Instead, a new paradigm called Fog
Computing (FC), is needed as an architectural means to realize
the IT/OT convergence [6]. Fog Computing is a “system-
level architecture that distributes resources and services of
computing, storage, control and networking anywhere along
the continuum from Cloud to Things” [7].

This paper proposes the use of a Fog Computing Plat-
form (FCP) for the implementation of industrial applications.
We focus on the application areas where electric drives are
present, since they are pervasive in industrial installations and
are used in many domains, such as automotive, food and
beverage, marine and offshore, hydraulics, refrigeration and air
conditioning, etc. Electric drives are used to control the speed,
torque and position of electrical motors (see Fig. 1), with
real-time software that resides on heterogeneous safety-critical
embedded systems controlling the power electronic circuits.
Electric drives sit in the “control level” (see Fig. 2) and
typically operate on the factory floor, working cooperatively
with other devices to automate machinery. Also, data produced
by each electric drive is a very critical asset because it carries
vital information about the machinery it controls, so the factory
owners are reluctant to expose this type of data over the
Internet. In addition, data can be massive, often repetitive and
not sensitive to delay. Sending it over the control network
would eat capability, hence there is a need for each drive to
be capable of data analytics locally. Our approach is to use
a fog computing architecture (which we call fogification) in
the implementation of electric drives, and show how such an
architecture can be successfully used for the development of
an industrial use case.

By developing the electric drives as fog nodes, new offerings
like programmability, analytics and connectivity to customer
Clouds are expected to increase the added value. Increased
flexibility allows drives to assume a larger role in industrial
and domestic control systems by benefiting from the ability
to instrument as the data source which can help in boot-
strapping the data economy. The main direct business benefit
comes from the ability to instrument also legacy systems
by using drives as the data source. Edge analytics will help
in off-loading the network and extend the Internet-of-Things
(IoT) solutions market. Digital services allow efficient service
provisioning, improved uptime, and decreased overall costs.
Correctly configured products and processes decrease energy
consumption and improve quality. Open data ecosystems will
allow anyone to innovate new value-added services and will
create long term benefits for all ecosystem participants.

In the remainder of this paper, we take the current ar-
chitecture of electric drives, tailor an FCP-based architecture

Fig. 1. An electric drive (in red) shown in an industrial setting.

for it and model them in Sect. II. We next identify the
challenges related to the fogification of electric drives and
collect the requirements that drive both architectures and also
the “technology bricks” needed to implement the fogified
electric drives in Sect. III. The proposed fog-based architecture
is then used to model an industrial use case. We evaluate
the resulting use case on several aspects, demonstrating the
usefulness of the proposed fog-based platform in Sect. IV.
We study the related work in Sect. V and conclude the paper
in Sect. VL.
II. ARCHITECTURE

In this section, we first introduce electric drives and how
they work in Sect. II-A. Then, we describe the current ar-
chitecture of the drives in Sect. II-B and take it as baseline.
We have derived a set of high-level requirements (presented
in detail in Sect. III-A) that will drive the definition of the
fog-based drives architecture in Sect. II-C. We compare the
baseline and fogified architectures in Sect. I[I-D. We use the
Architecture Analysis & Design Language (AADL) [8], which
has the ability to model large-scale architectures from many
aspects in a single analyzable model via its strong syntactic
and semantic support for the description of both hardware and
software systems. Hence, we use AADL to model the baseline
and fogified architectures.

A. Electric Drives

An electric motor is an electro-mechanical machine which
converts electricity into mechanical rotary movement of its
shaft. The mechanical rotary movement of the shaft is gen-
erated through the interaction of a magnetic field and an
electric current which impacts the movement, i.e. rotation
speed, rotation torque, and position of the shaft. Electric drives,
alternatively called drives, are used to alter characteristics of
the electric current such as frequency and voltage to control
the motor speed, torque and position [9].

To automate and control machinery and industrial equip-
ments, which comprise the first level of the automation pyra-
mid (see Fig. 2) and sit on the “Machine level”, a preliminary
control device is used to determine the required output of
the actuators: electric motors in our case. The electric drives,
as secondary control equipment which are placed close to
the actuators and industrial devices on the factory level, are
connected to the preliminary control equipment, and control
the actuators to generate the required output.

Manufacturing

Control

AN
AN

Machine

OT/
/

Fig. 2. Automation Pyramid

AC Line I I
———— 1 Rectifier — Inverter ———)
—|_ _'_

Power Module

Reference
ed

_____ - - |
g I I Voltage & |
i |Communication|_| Frequency |

| Module | Control

I Jo1 Mode

Fig. 3. Internals of an electric drive

The internals of an electric drive have a communication
module, a control module, and a power module. The com-
munication module receives the required motor output as a
reference from the preliminary control equipment via indus-
trial network. The control module runs a control application
to drive the output to the given reference value via the power
module which alters the frequency or voltage, based on the
type of the drive, to generate the electric current that leads
to the desired motor output. A drive is an embedded cyber-
physical system that requires real-time response and reliability
in order to meet degrees of quality in its output to be able to
interact with other devices.

Electric drives are designed for either general purposes, i.e.
to control certain power range motors, or specific purposes, i.e.
to control a specific electric motor with specific requirements.
The drives come in various types, indicated by their power
modules, which use different electric current characterizations.
Moreover, safety features such as a motor brake are embedded
in the control module. Internals of an electric drive are
depicted in Fig. 3.

B. Baseline Architecture

In this section, we consider a VLT drive from Danfoss
Power Electronics [10], and describe its current architecture,
which we call the baseline. The hardware platform of the
baseline has four modules: the communication module, the
operation module, the control module and the power module.
Each of the first three modules has a dedicated single-core
processor and memory unit. The software stack for each
module is dedicated. We model the baseline with AADL and
show it in Fig. 4.

As depicted in the figure, the communication module has a
network switch to connect through the Fieldbus interface with
the ProfiNet/RT [11] standard. Its software stack has a real-
time operating system which runs a time-triggered application
with a limited cycle time that handles the network protocol.
We assume that the drive communicates with a Programmable
Logic Controller (PLC) as the preliminary controller to get the
desired output of the motor, and a Human Machine Interface
(HMID) to set the drive parameters such as communication
and motor control configurations. The control module runs a

ElectricDrive.Baseline™

T ElectricDrive Software*
1
1

4 ’ ControlApp" 7
lonitoringApp Nnm on(Dsz
7

4
ConfrolModule™

CommunicationApp™ inData

on(Dzﬁ /" ModeControlApp /
ation!

| PowerModule™ 10 LJ |

Fig. 4. AADL diagram of the baseline architecture.

feedback control application on the same real-time operating
system, implemented according to the IEC61131-3 standard
function blocks, once it is engaged. The control module has
I/0O links with the power module to get the feedback and set
the control signal.

The software stack of the operation module has the same
real-time operating system and runs applications which have
priorities commensurate with their execution rates. The appli-
cations are: a mode application which engages and disengages
the motor controller, a monitoring application which pre-
analyzes the drive data, and a management application which
configures the communication and controller parameters. The
monitoring application collects data such as voltage and tem-
perature and does local machine learning to predict the drive
maintenance. The operation module shares separate dedicated
buses with the communication module and the control module
for data exchange.

C. Fogified Architecture

We propose a fogified architecture for drives, based on
extending the initial designs proposed in the Fog Computing
for Robotics and Industrial Automation (FORA) European
Training Network [12]. The proposed fogified drives architec-
ture can be used both within the traditional hierarchical model
of industrial automation (Fig 2) and in future distributed cyber-
physical systems architectures (Fig. 5) that are envisioned
to be used in Industry 4.0. In such a distributed architec-
ture, the integration of computational and storage resources
into the communication devices is realized in the fog node.
In many applications, including industrial automation and
robotics, several layers of fog nodes with differing computa-
tion, communication and storage capabilities will evolve, from
powerful high-end fog nodes to low-end fog nodes with limited
resources. Researchers have started to propose solutions for
the implementation of fog nodes [13] and fog node solutions
have started to be developed by companies [13]. Fog nodes
could be connected to each other and to the machines through
a deterministic communication solution, such as IEEE 802.1
Time-Sensitive Networking (TSN) [14], see Fig. 5. In TSN,
time sensitive traffic is transmitted using schedule tables called
“Gate Control Lists” (GCLs). Such an FCP-based architecture
allows to increase the spatial distance between the physical
process and the fog nodes that controls it, allowing the
control functions to be executed remotely on the fog nodes.
Several initiatives are currently working towards realizing this
vision [12], [13].

We model the fogified architecture with AADL and show
its schematic architecture in Fig. 6. The model consists of a
hardware platform which has a dual-core processor, a switch

<)

Apps
& Cloud
@b& & -
Q"\$
N
o
A
by FOQ
Node
TSN
Fo ||
g @ﬂ
S

Fig. 5. Fog Computing platform. Boxes represent fog nodes, connected with
each other and to the Cloud; the thick lines are the network. Applications
(Apps) run on the fog and Cloud.

FogSoftwarePlatiorm
Fog SoftwarePlatform.Hype rvisorSupport

_____________________ e sesSSS E
HypervisorPikeOS

_____ 3 1 W e

————————— 1
Applicatons 11

ControlApp®

FogHardwarePlatiorm™ network

Storage* .. Pci FogNode.HardwarePlatform
pci

]
1
1
1
1
1
1 CPU* ™ pci
1
1
1
1
1

———— — pei U
FreET R e 1
1 I]

-+

[TSNCard"
enet 3 enet_2 enet_1 enet 0
[o FE Q g U Q

H TSN 3 TSN 2 TSN 1

L TSN3 [Tsn2 [TSN _[] TSNO [1

TSN 0

Fig. 6. AADL diagram of the fogified architecture

and a power module, and a software stack which has a
hypervisor, a middleware, an OS and an application layer.

The mixed-criticality applications running on the dual-
core processor are using temporal isolation enforced by the
hypervisor, to prevent them from interference. The hardware
platform has a TSN-enabled network switch and a power
module which generates electric current according to the given
control signal to drive motors, all connected through a shared
bus. As depicted in the figure, the module has I/O with the
processor which enables getting feedback and setting control
signals.

We assume using PikeOS [15] as the hypervisor which
implements temporal partitioning to isolate the applications. In
our model, we have three partitions, indicated by the applica-
tions assigned to them: control, communication and operation.
The hypervisor schedules the execution of partitions. We also
consider using a middleware on top of the hypervisor to enable
data exchange between the partitions and provide features like
runtime updates.

The control partition has a soft-PLC OS, and the control
application is implemented using the IEC61131-3 standard
function blocks. The control application is configurable via
the middleware. The communication partition has a real-time
OS which runs applications for controlling the network traffic,
applying security mechanisms, handling the applications traf-
fic, and setting the message schedule tables (GCLs), all via
the middleware. We assume that the operation partition has an
OS to run different type of applications including a machine
learning application for predictive maintenance (same as the
predictive maintenance application in the baseline).

D. Comparison

The most significant difference between the baseline and
the fogified architecture, is the change in isolation mechanism
from spatial to temporal. The multicore processor and the
shared resources such as bus and memory increase the unpre-
dictable delays and overheads in the execution of tasks, as well
as the data exchange of applications. Although the fogified
architecture brings more interference and unpredictability, it
provides a programmable platform for monitoring purposes.

In the fogified architecture, we proposed using a hypervisor
to enforce temporal isolation with the added cost of over-

TABLE I
SYSTEM LEVEL REQUIREMENTS

Requirement

Realization in the baseline architecture

Realization in the fogified architecture

Drives shall be designed according to the indus-
trial standards

IEC61800-based design

IEC61800-based design

Drives shall have time—constraint interface

1 ms time—constraint ProfiNet interface

Jitter-free TSN interface

Drives shall be able to monitor and process data
for predictive maintenance purpose

Machine Learning framework with appropriate
Safety Integrity Level

Machine Learning framework with appropriate
Safety Integrity Level

Drives shall run mixed-criticality applications
according to the industrial standards

Spatial separation according to IEC61508

Temporal separation according to IEC61508

Drives shall control the electric motor accurately

Motor control with response time of 30 ms and
good quality-of-control

Motor control with response time of 20 ms and
good quality-of-control

Drives shall be configurable according to the
industrial standards

Configurable according to IEC61508

Configurable according to IEC61131

Drives shall have secure access to the Cloud

Cloud connection provided by external devices

Cloud connection provided by TSN interface

with security mechanisms

head to the computation. The best effort partitions provide a
programmable platform to collect data from different sensors,
perform sensor fusion already in the drive as edge node, run
simple machine learning algorithms in the device, and finally
stream data over the interface.

The other significant difference between the two architec-
tures lies in the use of TSN instead of ProfiNet/RT which
helps in Cloud connectivity and IT/OT convergence. We also
consider applying selected security mechanisms to protect
against possible cyber-attacks. We see that the technology bot-
tlenecks are in the hypervisor and TSN where applications and
traffic should be scheduled, isolated and protected concerning
industrial grade standards.

ITII. CHALLENGES

In this section, we identify the system level requirements
that drive the baseline and fogified architectures in Sect. III-A.
We discuss the challenges inherent in the design and develop-
ment of fogified drives and propose the necessary technology
bricks in Sect. III-B.

A. Requirements

We identify the system level requirements and the relevant
realization in Tab. I, where the requirements are shown in
column 2, the baseline realization in column 3 and the fogified
realization in column 4. Unlike special-purpose drives which
have to satisfy certain requirements that are needed for their
specific purpose, the general-purpose drives which are consid-
ered in this paper have to satisfy more generic requirements
that aim to make the drive compatible with a wide-range of
electric motors.

For each of the requirements, we sort the relevant archi-
tecture components by the order of flexibility, take the least-
flexible one as a pivot point, apply the requirement on the
component to achieve the best possible performance, refine
the requirement concerning the achieved performance, and
apply the refined requirement to the next component. The
system level requirements are qualitative at the beginning, and
become quantitative after several iterations of applying them
to the components, since each requirement aims to achieve
the best performance. In industry, the strongest requirement is
generally the financial aspect which mostly covers the costs,
and prevents achieving the best performance.

Requirement 1 implies that the drive design should comply
with the industrial standards, which is met by both architec-
tures in the same way via IEC61800 that states control strate-
gies and performance requirements of the motor controller
and converter in different operation conditions. Industrial time
constraint communication is considered in requirement 2,
which is realized by ProfiNet in the baseline, and TSN in the
fogified architecture. We consider a machine learning approach

for drive maintenance prediction as a service in requirement 3.
The service is implemented as an application with lower
criticality in both architectures and addressed with different
isolation approaches with respect to IEC61508, as imposed
by requirement 4. Requirement 5 imposes accuracy (control
performance) constraints on the control application along
with performance constraints (imposed by requirement 1) and
integrity constraints (imposed by requirement 4 where the
control application has the highest priority and highest Safety
Integrity Level). The configurability of the applications for per-
formance and operation is addressed in requirement 6, which
needs communication between applications that is realized
in different ways in the baseline and fogified architectures.
Secure access to the Cloud (imposed by requirement 7) is
applied by using external equipment such as a gateway that
has cloud connection in the baseline architecture, and by using
security mechanisms on the TSN interface in the fogified
architecture.

B. Technology Bricks

The fogified architecture proposed in Sect. II-C has been
driven by and meets the requirements from Sect. III-A. To
implement such an architecture, we identify in this section the
needed “technology bricks”, which can be methods, models,
hardware, software, tools, mechanisms, etc. We have identified
the following technology bricks:

The FCP Configuration provides a configuration for tem-
poral separation and scheduling of mixed-criticality tasks. The
configuration also considers the extra functional requirements
of the tasks such as the quality-of-control (QoC) for control
applications (see [16] for more details). The configuration
consists of partition tables, the task schedule tables inside
each partition and GCLs of TSN switches; which addresses
requirements 2, 4, 5 and 6. A Machine Learning Framework
brings the capability to predict when the drive maintenance
is needed, by accessing the drive data via middleware. We
propose a decentralized framework concerning the TSN capa-
bility of the fogified architecture which leads to more accurate
prediction. We also propose a fault detection, isolation, and
recovery (FDIR) method to be applied on TSN communi-
cation and tasks execution. The method is implemented on
the middleware and monitors tasks execution and network
communication traffic. It applies detection and identification
techniques, and provides recovery mechanisms in case of
faults. Furthermore, we propose to deploy various Security
Mechanisms which protect TSN from cyber-attacks and unau-
thorized access to the node. The mechanisms are implemented
on the hypervisor where low-level access to hardware is
possible.

Fig. 7. Conveyor Belt Use Case

IV. EVALUATION

We have used the proposed fogified architecture to model
a Conveyor Belt Use Case (UC): a conveyor belt is used to
distribute packages from an inventory to different destinations
based on the package. The conveyor belt is well-known and
widely used in inventories for the automatic distribution of
packages, and is realized using electric motors and drives. In
the UC we consider a typical machine as depicted in Fig. 7.
The machine is fed with packages from one side and reads
the tag of the received package. It gets the destination of
the package by accessing a database with the read tag; and
drives the package towards the destination from one of the
other sides of the machine. The UC has been realized using
the proposed fogified architecture from Sect. II-C and the
technology bricks from Sect. III-B. In this section we evaluate
the resulting implementation on several aspects to address the
requirements (showing the suitability of the implementation
for industrial applications) and exhibit the new offerings such
as programmability, analytics and connectivity to customer
Clouds (showing the added value of the implementation for
industrial applications) as shown in the subsections.

A. Network configuration for QoC

Since the fogified architecture shares the same communi-
cation medium for hard and soft real-time, non-critical and
best effort communication, we propose the scheduling of the
traffic on TSN to guarantee timing requirements of the streams.
We assume that the communication between drives and other
industrial equipment is achieved via TSN and also the control
applications are a set of streams which have hard real-time
requirements. All messages are scheduled using the schedule-
based time-sensitive traffic type in TSN, which, as mentioned,
uses schedule tables in the switches (GCLs) to schedule
the transmission of messages. The streams are prioritized in
accordance with their criticality and scheduled with respect to
their requirements. Recent works that address scheduling of
TSN traffic can be found in [17].

We employ the constraint programming-based schedule syn-
thesis strategy aiming at maximizing the QoC and satisfying
the deadlines of real-time messages, proposed in [18] to
schedule the traffic.

TABLE II
STREAMS IN THE CONVEYOR BELT USE CASE
| Size Period Routing Max. delay
(bytes) | (us) (us)

1 500 3000 C1 — Ny — Ay 4

2 100 1000 Cy — N5 — Ny — Ny — Ay 8

3 150 3000 Ci —> Ny — Ny — Ay 4

4 1 250 4000 Cy — Ns — Az 2

5 1200 10000 Ay = Ny = Ns — C 57
6 300 4000 A1 — Ng %Nﬁ‘)Cl 3

7 | 400 3000 S1 = Ny — N3 — Cy 20
8 | 400 6000 S» = Ny = N3 — Cy 20
9 1500 15000 S3 = Ny = Ns — C; 59

TABLE III
TASKS IN THE CONVEYOR BELT USE CASE

Applications Tasks WCET (us) P (ms)
" T 500 10
T 2500 10
T3 2500 10
7 T4 1500 12
Ts 3000 12
% [15000 50
Ya T 2000 20
Ty 3000 20
Ty 1500 20
Tio 1500 20

We have evaluated our proposed network configuration
strategy on our Conveyor Belt UC. In the given example, the
five switches (denoted with N) connect three sensors (denoted
with S) to two controllers (denoted with C), and transmit the
messages from controllers to four actuators (denoted with A).
The details of the streams are shown in Tab. II where the
stream name, size, period and routing are shown in columns 1
to 4 respectively. We assume that one of the controllers runs a
motor control application for speed control of electric motors.
The motor speed controller running on the node C; receives
message 7 which is the sensor data S;, and sends message 1
to our proposed fogified drive A, which controls an electric
motor. We assume that all links have 1 Gbps bandwidth.

The proposed strategy has successfully scheduled all
streams, i.e., none of the deadlines are missed, and minimized
delay and jitter of streams, resulting in an optimized control
performance. The results show that all streams have zero
jitter, which improves control. The column 5 in Tab. II shows
the maximum delay of streams. We used JitterTime [19] to
simulate the behavior of the control application which reports
a value of 0.008 for the QoC (see [18] for the exact cost
function), i.e., a good control performance.

B. Configuration of hypervisor partitions and task schedules

Since the real-time applications are virtualized and imple-
mented as tasks, the FCP configuration (e.g., task scheduling)
has impact on the performance of control applications. We as-
sume the use of deterministic hypervisors for virtualization of
applications on the fog node similar to [20], where hypervisors
provide a deterministic access to shared resources via a static
configuration table and provide spatial and temporal isolation
of mixed-criticality applications via “partitioning”. We propose
a metaheuristic solution to optimize the hypervisor partition
tables, map the tasks to the processing cores of the multi-
core processors of fog nodes, assign the tasks to partitions
and schedule the tasks inside the partition tables.

Our proposed solution provides temporal separation of tasks
similar to [21], [22] and assignment of the tasks to the
cores, and scheduling of the tasks inside the partition slices,
similar to the optimization strategy presented in [16] where
the static scheduling of tasks considers the QoC of control
applications. We have evaluated our solution, while ignoring
the temporal isolation of tasks, on the UC in which four
applications, including a control application denoted with i,
are running on a fog node that has two cores. Each application
has number of tasks and each task has a worst-case execution
time (WCET) and a period (P). The control application is the
drive’s controller for controlling electric motors. The details
of the applications are shown in Tab. IIL

Our proposed optimization strategy has successfully sched-
uled all the tasks and decided the task mapping to the
cores. The results show that none of the tasks has missed
its deadline. Furthermore, the control application has a good

control performance which is evaluated with JitterTime [19]
that calculates a value of 0.011 for the QoC (cf. the cost
function from [16]).

C. Addressing security mechanisms in TSN

In order to adequately protect the system against adver-
saries, security mechanisms are required. A compromised sys-
tem may lead to safety requirements being violated, meaning
that security services must run with at least the same priority
as critical tasks. We briefly discuss security solutions that are
enabled by fogification of the drive in our UC. These should
all be deployed in parallel, as an instance of a defense-in-
depth approach. The various mechanisms proposed here are
summarized in Table IV.

Firstly, the drive will communicate sensitive data over the
Internet, such as usage statistics for predictive maintenance.
To ensure confidentiality and integrity of the data, as well
as authenticity of the remote party, secure communication
standards such as TLS should be used to provide confiden-
tial authenticated communication channels. The FCP should
block any attempt at communication to endpoints it cannot
authenticate. To further limit the attack surface, a firewall
should be active on the hypervisor level, ideally making use of
the predictable nature of machine-to-machine communication
by using whitelists for known addresses and services. These
measures protect against attacks known as the Man-in-the-
Middle (MitM) attacks, where an adversary sits between the
legitimate sender and receiver, capable of snooping on and/or
modifying data in transit.

Services that communicate with the Internet (including
Cloud service) form a major attack vector of Internet-
connected devices, and should be placed in separate partitions
by the FCP, isolating them from other services. This makes
it more difficult for attackers to pivot to other parts of the
system, should they break into an Internet-facing service, thus
limiting the impact of an intrusion.

Additionally, a security monitoring service should run in
a separate highly-privileged partition, capable of detecting
anomalous behavior in the system, while also improving
forensic possibilities. These are important factors in a fast
detection of system intrusion, impact analysis, and attacker
attribution.

Because of the time-critical nature of TSN, the protocol
itself provides only minimal security, it is necessary to isolate
this as much as possible from the rest of the system. In this
UC, the architecture is perfectly positioned to isolate all TSN
traffic from the rest of the physical network using Software
Defined Networks (SDN), or similar techniques. For further
protection within TSN, per-stream filtering as described in the
IEEE 802.10qw [14] standard can be applied as a light-weight
monitoring technique. In order to mitigate Denial of Service
(DoS) attacks as much as possible, careful consideration to the
network topology should be given during the design phase, so
that if a single link in the network were to fail, traffic can be
routed over different paths.

Finally, within industrial networks, physical access to ma-
chines is a relatively common attack vector, therefore, config-
uration changes of the electric drive should not be possible
without some form of authentication of the operator, such as
a secure hardware element.

D. Distributed predictive maintenance in the fog

Here we propose a distributed Machine Learning frame-
work where the distributed drives and the centralized server
jointly (collaboratively) train one global model. Typically,

TABLE IV
THREATS AND THEIR MITIGATIONS

Threat

MitM, impersonation
Attack impact
Remote attacks

DoS

TSN security
Physical attacks
Detection

Mitigations

Confidential, authenticated com. channels
Service isolation (e.g. partitions)

Firewalls, endpoint whitelisting

Redundant network topologies

Isolation of TSN protocol, per-stream filtering
Hardware token for configuration changes
Security monitoring service

the distributed drives placed in different locations, generate
data that captures the local information instead of global
information and they train their local models based on the
partial knowledge. The aggregation step at the server-side
enables the information sharing between drives and server to
obtain one model with overall knowledge. Consecutively, the
server sends the aggregated model back to drives. The whole
procedure may iterate several times. In a nutshell, as depicted
in Fig. 8, it is divided into four steps: (i) local model training,
(i1) model (or gradient) transmission, (iii) aggregation and (iv)
sending aggregated model back to decentralized devices.

We applied this method combing with active learning [23] in
the work [24], which experimentally proves its effectiveness.
This collaborative learning scheme mainly has two virtues.
Firstly, it may save the cost of bandwidth by avoiding the
transmission of the massive training dataset (transmit model
parameter or gradient instead). Secondly, it may preserve user
privacy by keeping data in the generation place, and at the
same time train a model that has comprehensive knowledge.
Yet, recently some researchers argue the gradient may breach
the privacy by reverse engineering work, but it can be defended
by plugging noises to the gradient before the transmission, e.g.,
noises generated from Laplace distribution. As we mentioned
before, data produced by electric drives is a very critical asset
because it carries precious information about the machinery it
controls, and we believe it can be addressed by the proposed
collaborative model.

We experimented on a public simulated engine run-to-
failure events dataset [25] to demonstrate our method, since
a public drive failure dataset was not available. We assume
four edge devices and one fog node in the experiment. The
dataset is composed of 24 features and the binary labels
where zero represents failure within one preset period (30
days), one otherwise. For the sake of a more elaborated result,
we can chunk time-to-failure into more periods to convert
it to a multiple-classification problem. For instance, label
zero indicates time-to-failure less than two weeks, label one
indicates the period between 2 weeks and one month, etc. We
employ Logistic Regression [26] as the model to carry out the
binary classification task. The one-shot binary classifier result
is depicted in Fig. 9, where the accuracy of the devices and
the aggregated model is shown. The aggregation step improves
the overall performance and the accuracy of the devices. Note

comprehensive
predictive
I maintenance

& prediction|

pggregation|
i

training &
prediction

training &
pradiction
| —

training &
prediction
—]

predictive predictive

predictive
2 maintenance n

Fig. 8. Distributed ML Diagram

100
IS 97.73 97.15
-~ |
8 95.28
5 95 93.52 93.53
Q
- H B

90

Dev.1 Dev.2 Dev.3 Dev4 Aggregated

Fig. 9. One-shot Predictive Maintenance Performance

that here we only demonstrate the one-shot result, but it can
be repeated multiple times according to the requirement.
E. Fault detection, identification and recovery for the UC

In this section, first, we list the safety requirements of the
IEC61508 standard, and then we propose a way to provide
safety assurance for the safety functions in the proposed UC.
The primary safety requirement for electric drives, whether
fogified or not, is to shutdown and stop the motor in case
of emergency situations such as voltage/current surges, which
can result in uncontrolled motor speeds, short-circuits and
possible danger to human life. Additionally, we present below
a set of safety requirements that needs to be included in the
design of the fogified electric drives. The identification of
failure modes for fogified electric drives shall be documented
at design time. A safe timer is a common practice since
functions related to drives require safe timers. The safety
of the drive is directly relying on the fact that the timer is
correct. Deadlock prevention among safety and non-safety
functions in the drives is one of the critical requirements
since a deadlock brings non-deterministic behaviors and is
the major cause of deadline misses for safety tasks. All
emergency and process shutdown functions (ESD, PSD) need
to be executed regardless of concurrent processes running in
the FCP. Their criticality must always be the highest. A failure
event should have a persistence parameter which specifies the
duration of the failure detection before a failure is declared.
The parameter should specify either a time duration or a
repeated detection threshold. The persistence time may be
zero so that any detection is immediately treated as a failure.
Adequate redundancy measures for safety functions are a
standard practice as well as temporal and spatial isolation
of safety and non-safety functions. The system shall have a
defined behavior on detection of a fault or a failure event.
This may be either a safe state or a well-defined consequence
or behavior. Last but not least, any run-time changes (such
as over-the-air firmware updates) in the fogified drives should
only be done to the non-critical parts or should undergo a
validation for safety.

To provide safety function guarantees, we have turned the
safety instructions into drive operational states by introducing
a marginal behavior. Therefore, the values of the operational
state of the drive are decided based on the satisfactory behavior
as a tool. We propose to deploy the tool on the middleware
of the architecture, which has access to all the partitions that
have applications with different criticality assigned to them.

We take the Conveyor Belt UC as an example to define

TABLE V
OPERATIONAL STATES AND SAFETY ACTIONS

Safety action

Re-route stream on alternate switch
Stop conveyor belt if item is fragile
Trigger emergency shutdown function
Inject coolant

Switch to safety controller (redundant)

Operational state

Switch failure

Part presence sensor failure
Emergency brake failure
Motor over-heating
Controller malfunction

several operational states for the drive and also proportional
safety actions to take. An unsafe safety state is one wherein
the safety state variables breach their threshold values. The
objective is that we have no overlapping conditions and the
drive always falls into one of the conditions which has a safety
action to take. For example, as shown in Tab. V, a safety
critical operational state such as an emergency brake failure
will trigger a safety action like an emergency shutdown that
is executed in a separate system partition.

V. RELATED WORK

Several research projects have addressed mixed-criticality
applications on that share multicore-based distributed archi-
tectures. The EMC2 European project!, aims to provide ef-
ficient handling of mixed criticality applications under real-
time conditions, scalability and utmost flexibility, full scale
deployment and management of integrated tool chains, through
the entire life cycle. Research on Fog computing platform
architectures has made progress in recent years [13], [27].
For example, the European projects FORA? and mF2C? focus
on creating open source, standards-compliant fog platforms
using COTS hardware to execute hard real-time industrial
control applications such as the electric drives discussed in this
paper. Companies such as TTTech Computertechnik AG and
Nebbiolo Technologies, Inc. are pioneers in the field of com-
mercializing the Fog computing paradigm with market ready
products for industrial automation. While design paradigms for
the fog are still in their early stages, there are certain generic
guidelines that are followed to ensure isolation of tasks of
varying criticality. In [28] the authors describe an execution
framework wherein applications are isolated temporally on
many-core processors.

Safety certification as proof of guarantees for the proper
execution of safety functions is needed for the FCP. Classi-
cal safety controller design such as the simplex architecture
[29], [30] provide a switching mechanism between a high
performance but non-safety certified controller and a simple
certified controller for safety functions. However, for complex
systems such as the FCP, the simplex design is non-optimal
due to the switching latencies. Selicean et al. [21] propose a
method in which different Safety-Integrity Levels (SILs) are
assigned to the applications. In this method applications with
the same SIL are mapped to a single partition. Virtualization
of control applications can be realized through separation
and scheduling the control tasks inside the partitions similar
to [22]. The modification of hypervisors provides different
degrees of separation. Modification of the Xen hypervisor to
guarantee timing constraints are proposed by Masrur et al.
[31]. The authors modify the hypervisor with a new scheduler
based on a fixed-priority policy and a control loop to control
timing constraints of virtual machines. [32] addresses safety
critical applications running in the Fog and how the FCP must
cater to these specific requirements.

One of the major research themes is resource management
in the Fog. In [33], the authors identify and classify the
architectures, infrastructure, and underlying algorithms for
managing resources in fog/edge computing. [34] proposes
a list scheduling-based heuristic to solve this problem. The
authors demonstrate the feasibility of reconfiguring the sched-
uled network at runtime for industrial applications within the
fog. [35] introduces a vulnerability-based method to quantify

1
2

www.artemis-emc2.eu
www.fora-etn.eu
3https://www.mf2c-project.eu

the security performance of communications on distributed
systems. Fault tolerant aspects are discussed in [36] where the
design problem is to minimize the schedule length and security
vulnerability of the application, subject to given fault-tolerant
constraints. A multi-objective optimization method to find
the best solutions is then proposed. [37] discuss potentially
contradicting design constraints: real-time capability versus
scalability. This paper suggests a design methodology and
architecture as a step towards perfectly scalable real-time
systems, i.e. systems with deterministic timing behavior and
run-time reconfiguration.
VI. CONCLUSIONS

In this paper, we have addressed a novel fog-based archi-
tecture that is a key enabling technology for Industry 4.0. We
have proposed to re-engineer electric drives and turn them
into fog nodes. We take the current drives architecture as
baseline, apply our proposed fog computing architecture to it,
and compare the two architectures. The proposed architecture
is driven by the stringent safety and performance requirements
of industrial applications. In addition, we have identified fog-
specific requirements and challenges.

We have modeled our proposed architecture with AADL and
studied the interaction of the components, identified the needed
“technology bricks” and bottlenecks, and mapped the proposed
architecture to a computing platform for the realization of
an industrial use case, a Conveyor Belt application. We have
evaluated the use case in relation to the proposed technology
bricks. As the evaluation shows, a fog-based implementation
of industrial applications is a promising approach to realize
the vision of Industry 4.0.

ACKNOWLEDGEMENTS

The research leading to these results has received funding
from the European Union’s Horizon 2020 research and inno-
vation programme under the Marie Sktodowska-Curie grant
agreement No. 764785, FORA—Fog Computing for Robotics
and Industrial Automation.

REFERENCES

[1] World Economic Forum, “Digital Transformation of Industries,” http://
reports.weforum.org/digital- transformation/wp-content/blogs.dir/94/mp/
files/pages/files/wef-digital-transformation-2016-exec-summary.pdf,
2016 (accessed March 15, 2020).

[2] D. Floyer, “Defining and sizing the industrial internet,” http://wikibon.
org/wiki/v/Defining_and_Sizing_the_Industrial_Internet, 2013 (accessed
March 15, 2020).

[3] H. Bauer, C. Baur, D. Mohr, A. Tschiesner, T. Weskamp, K. Alicke,
and D. Wee, “Industry 4.0 after the initial hype—where manufacturers
are finding value and how they can best capture it,” McKinsey Digital,
2016.

[4] M. Garcia-Valls, T. Cucinotta, and C. Lu, “Challenges in real-time
virtualization and predictable cloud computing,” Journal of Systems
Architecture, vol. 60, no. 9, pp. 726-740, 2014.

[5] D. R. Harp and B. Gregory-Brown, “IT/OT convergence bridging the
divide,” NEX DEFENSE, 2014.

[6] W. Steiner and S. Poledna, “Fog computing as enabler for the Industrial
Internet of Things,” e & i Elektrotechnik und Informationstechnik, vol.
133, no. 7, pp. 310-314, 2016.

[7] OpenFog Consortium, “OpenFog reference architecture for fog
computing,” https://www.iiconsortium.org/pdf/OpenFog_Reference_
Architecture_2_09_17.pdf, 2017 (accessed January 5, 2020).

[8] P. H. Feiler, D. P. Gluch, and J. J. Hudak, “The architecture analysis
& design language (AADL): An introduction,” Carnegie-Mellon Univ
Pittsburgh PA Software Engineering Inst, Tech. Rep. CMU/SEI-2006-

TN-011, 2006.
[9] 1. Boldea and S. A. Nasar, Electric drives. CRC press, 2016.
[10] Danfoss, “Danfoss Electric Drives,” https://www.danfoss.com/en/

products/ac-drives/?sort=default_sort, 2020 (accessed March 15, 2020).
Siemens Simatic, “Profinet system description—system manual,” Issue
AS5E00298288-04, vol. 6, 2008.

Fog Computing for Robotics and Industrial Automation (FORA), “Fog
Computing Platform: requirements and initial designs,” https://drive.
google.com/file/d/1QwBfcqij72ZdeMWmhwAwm_MdSHePEIUy/view,
2019 (accessed March 25, 2020).

(11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

(33]

(34]

[35]

[36]

[37]

C. Puliafito, E. Mingozzi, F. Longo, A. Puliafito, and O. Rana, “Fog
computing for the Internet of Things: A Survey,” ACM Transactions on
Internet Technology (TOIT), vol. 19, no. 2, pp. 1-41, 2019.

IEEE, “Official Website of the 802.1 Time-Sensitive Networking Task
Group,” http://www.ieee802.org/1/pages/tsn.html, 2016 (accessed March
5, 2020).

R. Kaiser and S. Wagner, “The PikeOS concept: History and design,”
SysGO AG White Paper. Available: http://www.sysgo.com, 2007.

M. Barzegran, A. Cervin, and P. Pop, “Towards Quality-of-Control-
Aware Scheduling of Industrial Applications on Fog Computing Plat-
forms,” in Proceedings of the Workshop on Fog Computing and the IoT.
ACM, 2019, pp. 1-5.

S. S. Craciunas, R. S. Oliver, M. Chmelik, and W. Steiner, “Scheduling
real-time communication in IEEE 802.1 Qbv time sensitive networks,”
in Proc. of the International Conference on Real-Time Networks and
Systems, 2016, pp. 183-192.

M. Barzegaran, B. Zarrin, and P. Pop, “Quality-Of-Control-Aware
Scheduling of Communication in TSN-Based Fog Computing Platforms
Using Constraint Programming,” in 2nd Workshop on Fog Computing
and the IoT, vol. 80. Schloss Dagstuhl-Leibniz-Zentrum fiir Informatik,
2020, pp. 3:1-3:9.

A. Cervin, P. Pazzaglia, M. Barzegaran, and R. Mahfouzi, “Using
JitterTime to Analyze Transient Performance in Adaptive and Recon-
figurable Control Systems,” in Proc. of IEEE International Conference
on Emerging Technologies and Factory Automation. 1EEE, 2019, pp.
1025-1032.

J. Ruh and W. Steiner, “The need for deterministic virtualization in
the Industrial Internet of Things,” in Proc. of the Workshop on Fog
Computing and the IoT. ACM, 2019, pp. 26-30.

D. Tamas-Selicean and P. Pop, “Design optimization of mixed-criticality
real-time systems,” ACM Transaction on Embedded Computing, vol. 14,
no. 3, pp. 50-78, May 2015.

M. Barzegaran, A. Cervin, and P. Pop, “Performance Optimization of
Control Applications on Fog Computing Platforms Using Scheduling
and Isolation,” IEEE Access, vol. 8, pp. 104 085-104 098, 2020.

Y. Gal, R. Islam, and Z. Ghahramani, “Deep bayesian active learning
with image data,” in Proc. of the International Conference on Machine
Learning. JMLR. org, 2017, pp. 1183-1192.

J. Qian, S. Sengupta, and L. K. Hansen, “Active learning solution on
distributed edge computing,” arXiv preprint arXiv:1906.10718, 2019.
A. Saxena and K. Goebel, “Turbofan engine degradation simulation data
set. NASA Ames Prognostics Data repository, NASA Ames Research
Center, Moffett Field,” 2008.

D. G. Kleinbaum, K. Dietz, M. Gail, M. Klein, and M. Klein, Logistic
regression. Springer, 2002.
S. Yi, Z. Hao, Z. Qin, and Q. Li, “Fog Computing: Platform and

Applications,” in Proc. of IEEE Workshop on Hot Topics in Web Systems
and Technologies, 2015, pp. 73-78.

Q. Perret, P. Maurere, E. Noulard, C. Pagetti, P. Sainrat, and B. Triquet,
“Temporal Isolation of Hard Real-Time Applications on Many-Core
Processors,” in Proc. of IEEE Real-Time and Embedded Technology and
Applications Symposium, 2016, pp. 1-11.

S. Bak, D. K. Chivukula, O. Adekunle, M. Sun, M. Caccamo, and
L. Sha, “The System-Level Simplex Architecture for Improved Real-
Time Embedded System Safety,” in Proc. of IEEE Real-Time and
Embedded Technology and Applications Symposium, 2009, pp. 99-107.
Lui Sha, “Using simplicity to control complexity,” IEEE Software,
vol. 18, no. 4, pp. 20-28, 2001.

A. Masrur, S. Drossler, T. Pfeuffer, and S. Chakraborty, “VM-Based
Real-Time Services for Automotive Control Applications,” in /EEE In-
ternational Conference on Embedded and Real-Time Computing Systems
and Applications, Aug 2010, pp. 218-223.

N. Desai and S. Punnekkat, “Safety of Fog-Based Industrial Automation
Systems,” in Proc. of the Workshop on Fog Computing and the IoT.
ACM, 2019, p. 6-10.

C.-H. Hong and B. Varghese, “Resource Management in Fog/Edge
Computing: A Survey on Architectures, Infrastructure, and Algorithms,”
ACM Computing Surveys, vol. 52, no. 5, 2019.

P. Pop, M. L. Raagaard, M. Gutierrez, and W. Steiner, “Enabling Fog
Computing for Industrial Automation Through Time-Sensitive Network-
ing (TSN),” IEEE Communications Standards Magazine, vol. 2, no. 2,
pp. 55-61, 2018.

W. Jiang, P. Pop, and K. Jiang, “Design Optimization for Security- and
Safety-Critical Distributed Real-Time Applications,” Microprocessors
and Microsystems, vol. 52, no. C, p. 401415, 2017.

W. Jiang, H. Hu, J. Zhan, and K. Jiang, “Work-in-Progress: Design of
Security-Critical Distributed Real-Time Applications with Fault-Tolerant
Constraint,” in Proc. of International Conference on Embedded Software,
2018, pp. 1-2.

P. Priller, W. Gruber, N. Olberding, and D. Peinsipp, “Towards perfectly
scalable real-time systems,” in Proc. of International Conference on
Computer Safety, Reliability, and Security. ~Springer, 2014, pp. 212—
223.

