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ABSTRACT In this paper, we address mixed-criticality applications characterized by their safety criticality
and time-dependent performance, which are virtualized on a Fog Computing Platform (FCP). The FCP is
implemented as a set of interconnected multicore computing nodes, and brings computation and communi-
cation closer to the edge of the network, where the machines are located in industrial applications. We use
partitioning and static-cyclic scheduling to provide isolation among mixed-criticality tasks and to guarantee
their timing requirements. The temporal and spatial isolation is enforced via partitions, which execute tasks
with the same criticality level. We consider that the tasks are scheduled using static cyclic scheduling. We
are interested in determining the mapping of tasks to the cores of the fog nodes, the assignment of tasks
to the partitions, the partition schedule tables, and the tasks’ schedule tables, such that the Quality-of-
Control for the control tasks is maximized and we meet the timing requirements for all tasks, including tasks
with lower-criticality levels. We are also interested in determining the periods for control tasks to balance
the schedulability and the control performance. We have proposed a Simulated Annealing metaheuristic,
which relies on a heuristic algorithm for determining the schedules and partitions, to solve this optimization
problem. Our optimization strategy has been evaluated on several test cases, showing the effectiveness of
the proposed method.

INDEX TERMS Fog computing, mixed-criticality systems, quality-of-control, scheduling, partitioning,
optimization.

I. INTRODUCTION
We are at the beginning of a new industrial revolution, i.e.,
Industry 4.0, which is underpinned by a digital transforma-
tion that will affect all industries. Industry 4.0 will bring
increased productivity and flexibility, mass customization,
reduced time-to-market, improved product quality, innova-
tions and new business models. However, Industry 4.0 will
only become a reality through the convergence of Operational
and Information Technologies (OT & IT ), which use different
computation and communication technologies. OT consists
of cyber-physical systems that monitor and control physical
processes that manage, e.g., automated manufacturing, crit-
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ical infrastructures, smart buildings and smart cities. These
application areas are typically safety critical and real-time,
requiring guaranteed extra-functional properties, such as,
real-time behavior, reliability, availability, industry-specific
safety standards, and security.
OT uses proprietary solutions imposing severe restrictions

on the information flow. IT such as Cloud Computing cannot
be used at the edge of the network, where industrial machines
are located, and where very stringent extra-functional proper-
ties have to be guaranteed [1]. Instead, a new paradigm, called
Fog Computing, is envisioned as an architectural means to
realize the IT /OT convergence. Fog Computing is a ‘‘system-
level architecture that distributes resources and services
of computing, storage, control and networking anywhere
along the continuum from Cloud to Things’’ [2]. With Fog
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FIGURE 1. Fog Computing platform. Boxes represent fog nodes,
connected with each other and to the Cloud; the thick lines are the
network. Applications (Apps) run in the fog and Cloud.

Computing, communication devices, such as switches
and routers are extended with computational and storage
resources to enable a variety of communication and compu-
tation options (see Fig. 1).

Fog Computing will enable a powerful convergence, unifi-
cation and standardization at the networking, security, data,
computing, and control levels. It will lead to improved
interoperability, security, more efficient and rich control,
and higher manufacturing efficiency and flexibility [3]. The
vision is to virtualize the control (which is implemented
as control tasks running on a Fog Computing Platform)
and achieve the same level dependability as the one taken
for granted in OT. Several initiatives are currently working
towards realizing this vision [4], [5].

The integration of computational and storage resources
into the communication devices is realized in the fog
node (FN ). In many applications, including industrial
automation and robotics, several layers of FN s with differing
computation, communication and storage capabilities will
evolve, from powerful high-end FN s to low-end FN s with
limited resources. Researches have started to propose solu-
tions for the implementation of FN s [3], [4] and fog node
solutions have started to be developed by companies [4]–[6].

An FN is equipped with computational resources that
allows the execution of applications and it is connected to
a larger data processing facility like a Cloud environment.
Regarding computation, we assume that the control tasks
are running in an Real-Time Operating System using real-
time scheduling policies (we consider static-cyclic schedul-
ing in this paper), and the control applications are separated
in different partitions enforced using hardware-supported
virtualization, based on hypervisors, such as ACRN [7] or
PikeOS [8]. FN s could be connected to each others and to the
machines through a deterministic communication solution,
such as IEEE 802.1 Time-Sensitive Networking (TSN) [9],
see Fig. 1. Such a Fog Computing Platform (FCP) allows to
increase the spatial distance between the physical process and

the FN that controls it, allowing the control functions can be
executed remotely on the FN . However, the way the FCP is
configured has an impact on the control performance of the
control applications.

Given a set of mixed-criticality applications and an FCP,
we are interested to determine anFCP configuration such that
the Quality-of-Control (QoC) of control tasks is maximized
and all the tasks meet their deadlines. Determining an FCP
configuration means deciding on the partitions, the mapping
of tasks to the FN s and partitions, the schedule table for tasks,
the partition table for partitions, and the periods of control
tasks. We do not address the scheduling of messages on the
TSN network, which can be solved with approaches such
as [10] that achieve low latency and zero jitter.

A. CONTRIBUTIONS
This paper shows that when control becomes virtualized,
implemented as tasks on an FCP, the configuration of the
FCP has a strong impact on the control performance. We
formulate the FCP configuration as an optimization problem,
and we have proposed a metaheuristic solution to solve it.
Compared to the related work (see Sect. VII), which has
addressed the scheduling of tasks to maximize QoC , we
also optimize the partitioning, which is required in an FCP
to provide isolation among mixed-criticality applications,
decide on the mapping of tasks to partitions, consider the
preemption of tasks to make static schedules more flexible,
and determine the period of control tasks to trade-off QoC
and schedulability of non-control tasks. In addition, we also
consider a more realistic model of control applications and
provide more accurate measure ofQoC compared to previous
work, see Sect. IV.

B. OUTLINE OF THE PAPER
In the remainder of this paper, we give the models for appli-
cation and architecture of the system in Sect. II. The problem
is formulated in Sect. III. We give an introduction to control
theory in Sect. IV. In Sect. V, we present the details of our
proposed optimization strategy with an illustrative example.
Our optimization approach is evaluated in Sect. VI on several
test cases. The related work is covered in Sect. VII and
Sect. VIII concludes the paper.

II. SYSTEM MODEL
This section presents the architecture and application models.
Table.1 summarizes the notations used in the system model.

A. ARCHITECTURE MODEL
There have been severalFN architectures proposed, and some
of them are commercially realized [4]–[6], [11], [12]. A pos-
sible FN architecture targeting mixed-criticality applications,
is presented in Fig. 2. Such an architecture is similar to several
FN architectures prepared for industrial applications [4], [6].
We model the architecture as a set of FN s, denoted by N .
Each FN , Ni ∈ N , has a set of cores Pi, and each core is
denoted with Pj ∈ Pi. An example architecture with two FN s
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TABLE 1. Summary of notations.

FIGURE 2. Fog node architecture. The software stack is running on a
multicore, and has, from bottom to top, a hypervisor, partitions running
OSes, middleware and tasks.

is presented in Fig. 3. The FN s have respectively two and
one cores. Sensors and actuators are connected to FN s with
network switches. The lines represent network links.

Mixed-criticality applications sharing the same platform
have to be isolated from each other, otherwise a faulty lower-
criticality task may interfere with a higher-criticality task,
leading to failure.We assume that the applications are isolated
from each other using spatial and temporal partitioning [13],
implemented via hypervisors such as ACRN [7], Xen [14],
PikeOS [8] or XtratuM [15].

We denote the set of partitions with 1. Each partition
δi ∈ 1, is characterized by a criticality level Li. For example

FIGURE 3. Example architecture with two FNs.

Li can represent the Safety Integrity Levels (SIL) of an appli-
cation, which has values from 0, non-critical, to 4, highest
criticality [16]. A partition δi, scheduled on multiple cores,
consists of several partition slices that are time slots to which
the processor is assigned for the partition. We assume that the
partitions are statically scheduled via partition tables, denoted
with V , (e.g, as used in Xen or PikeOS), which allocate
processing cores from an FN to partitions in partition slices.
A partition table repeats periodically with a system cycle.
Switching among partition slices imposes an overhead. This
overhead depends on the computing platform, the hypervisor,
see [17] for a description of overheads in Xen, and may also
depend on the contents of the partition. For example in [18],
researchers assume that the overhead is 5% of the maximum
worst-case execution time (WCET) of the tasks allocated to
a partition. Our model is general, and assumes a partition-
dependent overhead denoted with ξi for each partition δi.

Real-time applications can be implemented with time-
triggered or event-triggered scheduling policies. In this paper,
we assume that the scheduling policy is static cyclic schedul-
ing [19] (also known as time-triggered scheduling), which has
been shown to be suitable for critical control applications. We
will consider event-triggered scheduling in our future work.
The set of all schedule tables in the model are denoted with S.
A schedule table si ∈ S, captures the start and finishing time
of tasks. We consider that within a schedule table, a task may
be split into several parts, similar to run-time preemption in
preemptive scheduling, but decided at design time. This has
been shown to improve flexibility, schedulability [20] and
QoC for control tasks [21]. The preemption threshold can be
controlled by a parameter called macrotick, which specifies
the granularity of preemption [22].

Fig. 4 shows an example of partition tables V and schedule
tables S using a Gantt chart. In this example, we assume
that mixed-criticality applications with a total of ten tasks
are executing on two cores, which have four partitions 1.
All tasks in a partition have the same criticality level. The
partitions δ1, δ2, δ3, and δ4 have the criticality level of
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FIGURE 4. Example partition tables and schedule tables: Ten tasks are scheduled on two cores and mapped to four partitions.

respectively L1 = 1, L2 = 0, L3 = 3, and L4 = 2. The black
lines represent the overhead times of the partitions. The task
scheduling is depicted with white rectangles and the partition
scheduling is depicted in colored rectangles.

B. APPLICATION MODEL
The set of all applications is denoted with 0. An applica-
tion is denoted with γi ∈ 0 and composed of tasks τj ∈
γi. Tasks may have data dependencies, which are modeled
using a directed acyclic graph (DAG), where nodes are tasks
and edges represent data flows between the tasks. A data-
dependent task is ready when all of its inputs have arrived.
A task produces its outputs when it terminates. For example,
as will be discussed in Sect.IV-A, each control application
is implemented as three data-dependent control tasks: a sam-
pling task, a task that implements the control algorithm and an
actuator task. Each task τi is periodic and has a period Ti, and
a deadline Di. The deadline is relative to the activation of the
task. For each task τi, we know the set of worst-case execution
times (WCETs) Ci on the cores, where it is considered for
mapping. The WCETs may be impacted by shared resources
in a multicore, i.e., bus, memory, I/O. However, the problem
of contention-aware scheduling is orthogonal to our work and
we can use the techniques mentioned in [23] to account for
the contention.

The mapping of tasks to the cores is modelled by using the
function M : τi −→ P, where P is the set of all cores in
the platform. The system engineers may place constraints on
the mapping of tasks, which can be handled by our model.
The tasks are also assigned to partitions for execution. The
assignment of the tasks to the the partitions is denoted byO :
τi→ 1, where1 is the set of all partitions in the system. The
criticality level of an application γi is captured by its SIL Li,
see Sect. II-A. Tasks can be assigned only to partitions that
have the same criticality level.

We assume that tasks which have data dependencies share
the same period. For a control application γi, we are given a
set of possible periods Fj. We use the function F to capture

FIGURE 5. Example application model with three applications.

the period Ti = F(γi) ∈ Fi of a control application γi.
Our optimization strategy will select the period of the control
application.

We show in Fig. 5 an example application model consist-
ing of three applications. The criticality level, deadline and
period of each task are depicted in the figure. The WCET
of each task is also given considering a given mapping to a
core. The values for deadlines, periods, and WCETs are in
milliseconds. The application γ2 is a control application with
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three tasks with precedence constraints. The application γ2
has a set of possible periods F2.

III. PROBLEM FORMULATION
We formulate the problem as follows: Given (i) a set of
applications 0 and (ii) a set of FN sN , we want to determine
a configuration9 consisting of: (1) a set of partitions1, (2) a
mappingM of the tasks to cores, (3) an assignmentO of tasks
to the partitions, (4) the periods of control applicationsF , (5)
the partition tables V , and (6) the schedule tables S such that:
1) Maximum control performance is achieved for the

critical control applications: We seek a solution
which has the best overallQoC for all the control appli-
cations. This is realized by minimizing the function J̄
captured by Eq. (7), see Sect. V-C.

2) The deviation among the QoC of control applica-
tions is minimized: We would like to balance the
deviation σJ , captured by Eq. (8), see Sect. V-C.

3) Temporal isolation is achieved among tasks with dif-
ferent criticality levels: Each task τi and its assigned
partition δj, captured with the function O, share the
same criticality level.

4) The deadlines for all tasks are met: Given that all
the tasks are periodic and real-time, each task τi should
completed before its deadline Di.

IV. CONTROL THEORY
The mathematical relation between the inputs, outputs and
state variables of a dynamical system around an equilibrium
point can be modelled as a linear differential equation and
denoted by a state-space representation [24]

ẋ(t) = Ax(t)+ Bu(t)+ w(t),

y(t) = Cx(t)+ Du(t), (1)

where the vectors x, u, w and y denote the state, the control
input, the disturbance input, and the measured output respec-
tively, and where A, B, C and D are matrices of appropri-
ate sizes. The input–output relationship can equivalently be
described by a transfer functionG(s) [24]. A feedback control
system, FCS, or simply a control application, samples the
output of the dynamical system y(t), calculates the devia-
tion from the desired output r(t) (in this paper generically
assumed to be zero), and drives the deviation to zero by
applying an appropriate control signal u(t).

A. FEEDBACK CONTROL SYSTEM
An FCS can be implemented as a three task application. The
source task, let’s call it τ1, samples the dynamical system by
using sensors. The task may process the captured data from
sensors. The second task, let’s call it τ2, uses the output of
the task τ1 to calculate the control signal. The task τ2 utilizes
various methods for the calculation and may be engaged with
time-consuming calculation [24]. The implemented method
for calculating the control signal is called the control law. The
sink task, let’s call it τ3, uses the output of the task τ2 to exert

FIGURE 6. A simple FCS.

the control signal using the connection with the actuators.
A simple FCS has an analogue to digital converter for the
source task τ1, a control law τ2, and an analogue to digital
converter for the sink task τ3. Fig. 6 shows a simple FCS.
A control application is typically a periodic application

with a known period. The period should be chosen in relation
to the speed of the controlled system, and the shorter the
period, the faster the controller is able to respond to the
typical disturbances. On the other hand, a too short period
causes high utilization of resources and leads to problems in
resource-constrained computing platforms. A common rule
of thumb [25] is to determine the period of the applica-
tion based on the bandwidth of the closed-loop system. The
closed-loop transfer function H (s) is calculated by

H (s) =
G(s)K (s)

1+ G(s)K (s)
, (2)

whereG(s) and K (s) are the transfer functions of the dynami-
cal system and the feedback controller respectively [24]. The
sampling period T is then chosen in the interval

0.2
ωb
≤ T ≤

0.6
ωb
, (3)

where ωb is the 3 dB bandwidth of H (s) [25].
As discussed, choosing the period from the interval has

two impacts; first, stability and robustness of controller and
last, resource utilization and schedulability. Our optimization
strategy will determine the periods F to strike a compromise
between their impacts.

The task timing is a source of additional disturbances for
a control application. Ideally, the controller should execute
without timing variations (jitter) and with as short delay
as possible between the sensor task and the actuator task.
A time delay has the direct consequence of decreasing the
phase margin of the control system, which means worse
performance and less robustness. Jitter is the deviation from
the true periodic timing of an event, and its effects on the
control performance are less obvious to analyze. In a control
application, the event can be the execution of a task or the
receiving of a network message.

The execution of a task is a periodic event of which
instances are characterized by start time, duration and end

VOLUME 8, 2020 104089



M. Barzegaran et al.: Performance Optimization of Control Applications on Fog Computing Platforms Using Scheduling and Isolation

FIGURE 7. Step response of a sample control loop.

time. Jitters can be associated with the start time, the end
time and the duration. It is also associated either among
all instances or two consecutive instances. The data packets
to/from actuators/sensors are also periodic events which are
characterized by send-time, transmit-time and receive-time
which are vulnerable to jitter. While we are ignoring the
communication in this paper, delays and jitter are only applied
to tasks. The jitter of a task is either measured among all the
instances (absolute) or two consecutive instances (relative).
We categorize jitters as follows:
• Start Jitter of a task is the maximum deviation of the
arrivals of instances of a task.

• Release Jitter of a task is the maximum deviation of the
worst-case delay between the arrivals of instances of a
task and their release times.

• End Jitter of a task is the maximum deviation of the
release time of instances of a task.

• Input–Output Jitter is the maximum deviation of
the worst-case delay between sampling from a cyber-
physical system and exerting the actuation to it among
the instances of tasks in a control loop. This type of jitter
covers both timing of communication links form and to
sensors and actuators, and the execution of the control
tasks.

B. CONTROL DESIGN
While designing an FCS, there is a trade-off between accu-
racy and rapidity of the control loop. The trade-off is called
the control performance. It is determined by several param-
eters such as the damping ratio, the phase margin and
the gain margin, see [24] for more details. These parame-
ters help control engineers to find the suitable control law
and tune the control law to get the intended performance.
The accuracy and rapidity is depicted in the transient and
steady state response of the control loop. Fig. 7 shows the
transient and steady state step-response of a sample con-
trol loop with notation of associated parameters (rise-time
Trise, peak-time Tpeak, settling-time Tsettling and steady state
error).

The rise-time Trise is defined as the time takes for the output
response to reach 90% of the input value. The rise-time shows
how fast the controller can react to the disturbances exerted

to the dynamical system. The peak response is defined as
highest out-put response the controller reached before the
desired value. The peak plays an important role in the robust-
ness of the controller against disturbances. The settling-
time Tsettling is defined as the time takes for the output
response to reach 98% of the input value. The settling-time
shows how fast the controller can reach to the desired state.
The steady-state error shows the minimum deviation of the
controller output response from the desired state. It shows the
accuracy of the controller.

The various aspects of the control loop performance can be
captured in a cost function. A common choice [26] is to use
a quadratic cost function of the form

J =
∫
∞

0

(
xT (t)Q1x(t)+ uT (t)Q2u(t)

)
dt, (4)

where the weighting matrices Q1 and Q2 tell how much
deviations in the different states and the control input
should be penalized. By proper tuning of the cost func-
tion, the desired transient and steady-state behaviour can
be achieved in the control design. The same cost function
can also be used to evaluate the performance of the con-
troller under non-ideal circumstances. A larger value of the
cost J then means that the response is more sluggish or
more oscillatory, typically increasing the settling time of the
system.

Given a linear system description by Eq. (1) and a quadratic
cost function in Eq. (4), an optimal controller known as
a linear-quadratic-Gaussian (LQG) controller can be calcu-
lated [24]. The above formulation is given in continuous time,
but the LQG design methodology can also handle a large
number of other conditions, such as sampled design [25]
and compensation for time delays [27]. The Jitterbug tool-
box [28], utilized in this paper to design control applications,
has support for designing an optimal sampled LQG controller
that compensates for either a fixed or a random input–output
delay with a given probability distribution.

C. CALCULATION OF CONTROL PERFORMANCE
In this paper, we use JITTERTIME [29] to calculate the QoC
with the cost function J , defined in Eq. (4). JITTERTIME takes
the schedule tables S and partition tables V and calculates the
cost J . The tables S contain the starting and finishing time of
the tasks. JITTERTIME simulates the behaviour of a control
application with the given starting and finishing times of
control tasks and evaluates the behaviour using the quadratic
cost function in Eq. (4).

The cost J decreases under the circumstances in which
the Input-Output Jitter of a control application (defined in
Sect. IV-A) as well as the end-to-end response of the control
application decreases. The end-to-end response of a control
application is the delay between the sampling from a cyber-
physical system and exerting the actuation to it. In our prob-
lem, the delay is between the starting of the sensor task to
the finishing of the actuator task. More information about the
inner workings of JITTERTIME can be found in [29].
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V. SOLUTION
The problem we are addressing in this paper is interactable.
Finding a solution to our problem involves deciding on
the schedule tables, which has been shown to be Non-
deterministic Polynomial time (NP)–complete in the strong
sense [30]. For such problems, exact optimization methods
such as Brunch & Bound, Integer Linear Programming and
Constraint Programming have exponential efforts. Hence,
we propose a Simulated Annealing (SA)-based metaheuris-
tic [31] to solve this optimization problem. Metaheuristics
do not guarantee finding the optimal solution, but have been
shown to find good quality solutions for a wide range of
practical applications [31].

We have decided to divide the problem such that the sched-
ule synthesis is performed separately within the SA using a
scheduling heuristic. List Scheduling [32] is a typical heuris-
tic that derives good quality solutions, but it cannot easily
handle applications with multiple periods and preemption.
Instead, inspired by [22], we have proposed a scheduling
heuristic based on the simulation of an Earliest Deadline
First (EDF) algorithm, which can handle both multiple peri-
ods and preemption.

An overview of our proposed Fog Computing Plat-
form Configuration (FCPC) optimization strategy in shown
in Alg.1. The SA decides the period of the control applica-
tions, the mapping of tasks to cores in the FCP. The assign-
ment of tasks to partitions and the partition and schedule
tables are decided by our EDF-based Scheduling and Par-
titioning Heuristics (SPH, called in Alg.1). SA also decides
parameters that influence the scheduling in SPH, such as
task offsets 2 and relative deadlines 8 used for the EDF
simulation.
SA is presented in Sect. V-A and SPH in Sect. V-B.

The objective function used for the optimization is pre-
sented in Sect. V-C. SA uses design transformation to explore
the search space, and these are presented in Sect. V-D.
Sect. V-E has an example that illustrates how our proposed
FCPC strategy works.

A. SIMULATED ANNEALING
SA (line 7–17 in Alg. 1) starts from an initial solution (line
4) and iterates to search the solution space (line 7–17). The
initial solution assigns the period of each control task to the
minimum value in its set of periods F , assigns the offsets 2
of tasks to zero, and sets the relative deadline 8 of all tasks
to their deadline values. The initial mapping M is obtained
by a greedy approach i.e., each task is mapped iteratively to
the core that has the smaller utilization in that iteration. The
initial assignment of tasks to partitions O is defined such
that each application has a partition for its criticality level
on each core where the application has a task mapped. The
partition tables V and schedule tables S are obtained with our
Scheduling and Partitioning Heuristic (SPH), called inside
the InitialSolution function.

In each iteration, SA uses design transformations (or
moves) to generate neighboring solutions starting from the

Algorithm 1 9 =<M,O,S,V,F >= FCPC(0,N )
1: i← 0
2: t ← Tstart
3: 2← {0};8← {Di}
4: 9 ← InitialSolution(0,N )
5: J ← JITTERTIME(S,V, 0)
6: �← CostFunction(J ,S)
7: repeat
8: <Mi, ,Fi,2i,8i >← Neighbor(9,0,N )
9: < Si,Vi >← SPH(Mi,Fi,2i,8i, 0,N )
10: Ji← JITTERTIME(Si,Vi, 0)
11: �i← CostFunction(Ji,Si)
12: λ← �i −�

13: if λ < 0 or random[0, 1) < Prob(λ, t) then
14: 9 ← 9i;2← 2i;8← 8i
15: end if
16: t ← t × α
17: until stopping criterion is True
18: return 9 =<M,O,S,V,F >

current solution 9 (line 8). The generated neighborhood is
evaluated with the cost function �, defined in Sect. V-C.
In each iteration, the algorithm compares the cost �i of
the generated neighborhood with the cost � of the current
solution (line 13).
SA accepts a solution if the cost is improved. SA may also

accept a worse-quality solution (in the hope to better explore
the solution space) with a certain probability:

Prob(λ, t) = e−
λ
t , (5)

where λ is the difference between cost of the generated neigh-
borhood and cost of the current solution (line 12). The proba-
bility to accept worse solutions decreases with time according
to a ‘‘cooling schedule’’, where t is the current temperature.
SA starts from an initial temperature Tstart (line 2), and cools
down in each iteration at the rate of α (line 16). The search ter-
minates when a stopping criterion has been satisfied (line 17),
e.g., no improvement after a given number of iterations, a
temperature of zero or a time limit was reached.

B. SCHEDULING AND PARTITIONING HEURISTIC (SPH)
Our proposed Scheduling and Partitioning Heuristic (SPH)
is presented in Alg.2 and takes as input a mapping M, a set
of periods F , a set offsets 2, a set of relative-deadlines 8,
the set of applications 0, and the set of FN s N . The main
idea of SPH is to create first a schedule table for the tasks
considering the mapping fixed by SA, and then to post-
process the schedule table to derive the partitions and the
allocation of tasks to the partition slices. Thus, SPH has two
parts, the first part schedules the tasks (line 2–10) and the
second part (line 11–13) groups the tasks together to form
partitions. During the construction of the schedule table in
the first phase, the SPH does not consider the partitioning.

As mentioned earlier, to derive the schedule tables S, we
perform at design time an EDF simulation. The output of that
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Algorithm 2 < O,S,V >= SPH (M,F ,2,8,0,N )
1: H ← HyperPeriod(0)
2: Qjobs← CreateJobs(0,H )
3: t ← 0
4: repeat
5: for all ∂ in Qjobs ready at t do
6: ∂H ← GetHighestPriority(∂)
7: X ← Schedule(∂H )
8: end for
9: t ← NextEvent(Qjobs, t)

10: until t < H
11: χ ← GroupTasks(X , 0)
12: S ← GenerateScheduleTable(χ)
13: V ← GeneratePartitionTable(χ)
14: return < O,S,V >

simulation is the set of schedulesS. In the simulation, we con-
sider that the duration of each task is its WCET. With EDF ,
a task has the highest priority (and will be scheduled on its
respective core) if its deadline Di comes earlier considering
the current time. The outcome S of a simulation is controlled
by2, the tasks offsets (their initial earliest activation) and8,
the relative deadlines used for each task in the simulation.
These are modified for each task τi by our SA in Alg. 1,
in the ranges Di to Ti for the offsets 2 and 0 to Di for the
relative deadlines8. Our EDF simulation allows preemption
(a higher priority task that is ready for executionmay interrupt
a lower priority task) considering the given macrotick, and
can handle data dependencies, i.e. a task will not start before
its predecessors have finished executing.

The EDF simulation is performed for the duration of a
hyperperiodH (which is also the system cycle), defined as the
Least Common Multiple of all the task periods (line 1). SPH
starts by creating a queueQjobs with jobs of the tasks in 0 that
have to run duringH (line 2). Note that in our implementation
these jobs are created on the fly, based on events occurring
during the simulation. These events are generated by our sim-
ulation at design time, as part of the simulation used to derive
the schedules. The simulation is performed in lines 4–10.
Because SPH is run in each iteration of SA, we have optimized
its implementation for speed, efficiency, simulation events
and skipping only to events that have relevance for building
the schedule tables S. In the following, we explain how the
simulation works in principle.

The simulation takes those jobs ∂ formQjobs that are ready
to execute at the time t (line 5) and sorts them based on their
priority (line 6). The job which has the earliest deadline and
its precedent jobs are arrived, has the highest priority. The
high-priority job is denoted with ∂H . If the priority of ∂H is
higher than the currently executing job, SPH preempts it and
schedule ∂H instead (line 7). The simulation is stored in X .
SPH determines the next time in which a job becomes ready
(line 9), considering the remainder of jobs in Qjobs and the
macrotick parameter mentioned in Sect. II-A, which controls
the granularity of preemption.

The final part of SPH post-processes the simulation data
structure X . SPH groups the time-wise consecutive jobs
which have the same criticality level to form partitions, and
also delays the tasks to insert the required task switching (in
case preemptions were introduced) and partition overheads ξi
(line 11). See Sect. V-E for an illustration on how our heuristic
works to create partitions by grouping tasks. SPH extracts the
schedule tables S from the simulation χ (line 12), and the
partition tables V (line 13).

C. COST FUNCTION
In this section, we define the weighted cost function � in
Eq.(6), used by our FCPC optimization strategy. The function
has three terms (QoC , deviation of QoC and task schedula-
bility constraint, respectively) and takes the QoC of control
applications J and the schedule tables S as input. The QoC
optimization is controlled by the weights β1 and β2, whereas
β3 is a penalty value for the case when task deadlines are
missed. The weights allow the system engineer to control the
search for schedulable solutions that optimize QoC . Larger
values for β1 and β2 will drive the search to optimize QoC ,
whereas a larger value for β3 will drive the search faster to
schedulable solutions.

� = β1 × J̄ + β2 × σJ + β3 ×3 (6)

The control performance of control applications is cap-
tured by the first term. Assuming m number of control appli-
cations, the average QoC for the applications is

J̄ =

∑m
i=1 Ji
m

, (7)

where, Ji is the QoC for a control application γi which is
calculated by JITTERTIME and its value is mapped to the
range [0, 1]. The range of cost performance is from 0, for
the best-performance, to 1, for the worst-performance, e.g.,
which is unstable. J̄ is normalized to the same range.

The second term captures the deviation among the QoC of
the control applications, and is defined in Eq. (8). Concerning
the range of J , the range of variation is from 0, for the equally

distributed QoC of control applications, to
√

m−1
m < 1 for m

control applications when their performance costs are highly-
deviated.

σJ =

√∑m
i=1 |Ji − J̄ |

m
(8)

The last term is the function 3, which is a constraint that
checks for deadline violations for all the tasks in the schedule
table.3 is also normalized, and starts form 0, for no deadline
violations, to 1, for the case in which all the jobs have missed
their deadlines.

D. SA DESIGN TRANSFORMATIONS
As mentioned earlier, SA decide the mapping M of tasks to
the core, assignment O of tasks to partitions, and periods F
of control applications. The SA also varies the offsets of tasks

104092 VOLUME 8, 2020



M. Barzegaran et al.: Performance Optimization of Control Applications on Fog Computing Platforms Using Scheduling and Isolation

FIGURE 8. Four different configuration for the applications in Table. 2; The black lines show the overheads of the partitions: CONF/U has no temporal
separation; CONF/S has several deadline misses; CONF/SM is feasible and the cost function value is 0.13522; CONF/O is the final solution which shows
77% improvement.

and EDF deadline to create different scenarios for the EDF
simulation, generating various schedules. SA uses moves to
explore the solution space by generating randomly neighbor-
hoods of the current solution. SA randomly selects one of the
moves and applies it to randomly selected tasks to generate
the neighborhood in each iteration. The moves are:

• Swap Tasks: swaps the mapping of two selected tasks.
• Period Selection: randomly chooses a period Ti from
the given set of periods Fi for the selected control task τi.

• Deadline Adjustment: randomly selects a relative
deadline 8 (used in the EDF simulation in SPH) in the
range from Di to Ti.

• Offset Adjustment: the offset 2 of the selected task τi
is selected randomly in the interval from 0 to Di.

To drive the search faster towards the schedulable solution
with increasedQoC , we encourage SA to pick tasks that need
special attention, e.g., because they missed their deadline
or they impact QoC . This is achieved by sorting the tasks
based on the criteria wewant to address (schedulability,QoC)
and selecting randomly tasks based on probability density
function that are skewed towards the head of the sorted list.

E. ILLUSTRATIVE EXAMPLE FOR FCPC
Let us present an example illustrating how FCPC works. We
have two cores, P1 and P2 and four applications, including
two control applications γ1 and γ4. The applications have
12 tasks in total. Each control application is controlling an

inverted pendulum in the upright position, with its process
modeled as

G(s) =
200

s2 + 400
. (9)

Each of the control applications has three tasks which
are respectively sensor, LQG controller, and actuator task,
see Sect. IV-A. The controller tasks, τ2 in the control appli-
cation γ1, and τ9 in the control application γ4 are LQG
controllers which are designed using Jitterbug [28]. Table 2
shows the applications, tasks and their details.

FCPC starts with an initial configuration which comes
from the initial solution (Sect. V-A, line 4 in Alg. 1). SPH
uses this initial configuration and creates an EDF simulation
(Alg. 2). We take the stored simulation X (line 7 in Alg. 2),
group the task to create partitions (line 11 in Alg. 2) and gen-
erate a schedule table (line 12) and a partition table (line 13).
Let us explain how partitions are create, starting from the
schedule in Fig. 8a, which is the result of EDF simulation
stored in X . SPH post-processes the schedule from left to
right, and, if two tasks share the same criticality levels, it
group them into same partition. Let us call this configuration
CONF/S (from configuration with separation) depicted in
Fig. 8b, which shows a part of the schedule table starting
from 0 ms to 40 ms. We use different colors to highlight the
partitions in Fig. 8. For example, we create four partitions,
denoted with δ4, δ5, δ6 and δ7 on core P2, with criticality
levels of Lδ4 = 1, Lδ5 = 2, Lδ6 = 3 and Lδ7 = 0.
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TABLE 2. Illustrative example applications.

The overhead times for these partitions are determined
as 100 µs, 50 µs, 100 µs and 50 µs, respectively (we use the
approach from [18], which considers the partition overheads
of 5% of the largest task WCET in the partition). Regarding
the task switching overheads, we use the values measured
in [22]. SPH may delay the tasks to apply these overheads,
hence several instances of tasks may miss their deadlines. For
example, the task τ3 will miss its deadline at t = 16 ms for
about 550 µs.
Let us consider that CONF/S is the current solution driving

the search performed by SA in Alg. 1, and this SA perform a
‘‘Swap Task’’ design transformation in line. 8, which results
in swapping the mapping of tasks τ4 and τ5. This will result
in the configuration from Fig. 8c, which we call CONF/SM
(from configuration with separation and mapping), which is
feasible, i.e., there are no deadline misses. As a consequence
of the task swapping, not only mapping of the tasks to the
cores are swapped but also their assignments to the partitions,
since they have the same criticality level. In this configura-
tion, the control application γ1 experiences maximum I/O
jitter (12.5% of its period, which is 8 ms) and the control
application γ4 has no I/O jitter (release and start jitters are
seen at t = 10 ms and t = 16 ms). The cost of control is
calculated by JITTERTIME, and the average of the two control
applications is 0.09642 and the deviation is equal to 0.0388.
The cost function, calculated as in Eq. (6) considering a value
of 1 for all weights, has a value of 0.13522.
SA will accept the configuration in Fig. 8c as the current

solution, since it improves over Fig. 8b that had deadline
misses (line 13 in Alg. 1). Let us assume that the next design
transformation is done by ‘‘Period Selection’’, e.g., by select-
ing the period of 10 ms for tasks in the control application γ1.
The resulted optimized configuration (CONF/O) is depicted
in Fig. 8d. The values of average QoC and the deviations
(terms one and two in Eq. (6)) are 0.0268 and 0.0033, respec-
tively, resulting in a cost function of 0.0301, which is an
improvement of 77% over the CONF/SM in Fig. 8c.

VI. EXPERIMENTAL EVALUATION
Our proposed optimization strategy, Fog Computing Platform
Configuration (FCPC), was implemented in C#, and all the

experiments were run on a laptop with an i7 CPU at 3.0
GHz and 32 GB of RAM. We investigate the performance
of our proposed method on ten test cases, which have mixed-
criticality tasks. The details of test cases are shown in Table 3,
where column 2 shows the total number of cores in the FCP,
column 3 shows the total number of control applications,
column 4 shows the total number of tasks, and column 5shows
the total number of tasks having a particular criticality level,
0 to 4. Each test case has multiple control applications: Each
control application has three control tasks (see Sect, IV-A)
and the control taskwhich implements the controller is a LQG
controller designed with Jitterbug to control a plant using one
of the three different processes which are defined in Eq. (9),
Eq. (10), and Eq. (11),

G(s) =
300

s2 − 200
, (10)

G(s) =
100

s2 + 300
. (11)

The tasks in each test case represent real-time tasks with
different criticality levels and can be run on any of the cores.
Tasks with the same criticality level are mapped to the same
partition and overheads are applied to each partition slice.

The results of evaluation are presented in Table 3. The �
columns show the cost function of test cases for each solution.
The results obtained by running FCPC on each test cases are
reported in column 6 using the value of the cost function �.
We have set the weights β1, β2 and β3 to 0.45, 0.1 and 1.0,
respectively. The weights were determined experimentally to
guide the search faster towards solutionswith optimizedQoC.
β1 can be set by analyzing the stability of the control appli-
cations with Jitterbug and choosing a value that drives the
search towards stable control. Jitterbug also reports the phase
margins (smaller phase margin means larger sensitivity) of
the applications and β2 is set to allow a larger deviation from
the mean QoC if there is a large variation among the phase
margins of the applications. A β3 value of 1.0 is a relatively
large penalty value considering that the cost function terms
are in the range [0, 1]. To determine the ability of FCPC to
improve the QoC measured by �, Table 3 also reports the
results obtained by three variants of FCPC, as follows:

• FCPC/M: does not optimize the mapping of tasks and
uses the mapping determined in the initial solution, as
explained in Sect. V-D.

• FCPC/Q: does all the optimizations of FCPC but does
not use theQoC in the cost function (the first two terms),
hence it optimizes only for schedulablity, ignoring the
control performance.

• FCPC/P: generates solutions with our proposed strategy
without considering period selection for critical control
tasks. The period of control tasks are set to their smallest
value.

The other� columns show the value in terms of percentage
in deterioration of the cost function for FCPC/M, FCPC/Q
and FCPC/P, respectively, compared to FCPC. A larger cost
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TABLE 3. Evaluation results for our proposed optimization.

function value, i.e., larger percentage deterioration, means a
worse-quality solution.

As we can see from Table 3, FCPC has been able to obtain
feasible solutions for all the test cases, i.e., all the tasks’
deadlines are satisfied and all the controllers are stable and
have goodQoC . The average value of cost function� is 0.24
and the values are not highly-deviated in all the test cases. We
have used a time limit of 20 to 70 minutes as a termination
criteria for FCPC and its variants, depending on the size of
the test case.

When comparing FCPCwith its variants that ignore certain
optimization aspects, we can see in the last three columns of
Table 3 large percentage deterioration, or even ‘‘unstable’’
control applications (shown with ‘‘Not Feasible’’) for nearly
all the test cases. For example, the results show that not
considering QoC in FCPC/Q gives the worst results, which
demonstrates that the JITTERTIME-based QoC evaluation of
solutions needs to be used during the optimization of a FCP
configuration. Otherwise, the controllers become unstable
even though the deadlines are not missed. Determining the
right period for the control applications is very important as
we can see in case of FCPC/P, where considering a single
period results in control applications that are unstable and the
degradation is high, on average 42% in all other cases. The
results also show the importance of mapping, since using in
FCPC/M, the mapping determined by the initial solution, the
degradation is on the average 28%.

A. REALISTIC TEST CASE
We have evaluated the proposed optimization strategy on a
realistic test case which consists of 8 applications running on
a fog node inside a vehicle. Future vehicles are envisioned
to be ‘‘fog nodes on wheels’’ [33] as they integrate more
and more functions and become interconnected with each
other.

The details of the test case are in Table 4. We have 8
applications running on a dual-core fog node which include
a drive-assistance application for radar-cruise control (appli-
cation γ4). The car is modeled with a first-order transfer
function and the controller is a LQG speed controller which
is design by Jitterbug. Application γ1 monitors the engine, γ2
is a passenger comfort application that controls the climate,

TABLE 4. Realistic test case.

γ3 is used for image analysis as part of driver-assistance
functionality. We give the applications different critically
levels, based on their importance, as presented in the table.

Our proposed optimization strategy has successfully
scheduled all the tasks and decided the task mapping to the
partitions and cores. The results show that none of the tasks
has missed its deadline. Furthermore, the mapping of tasks to
the cores shows the core utilization of 86.67% and 86.88% for
the dual-core processor. We used JITTERTIME to simulate the
controller behavior and calculate the cost of control for the
application concerning the given cost function in IV-C with
the weights of 0.25, and 0.25 and 1 for β1, β2 and β3. The
cost function has the value of 0.007.

VII. RELATED WORK
There is already much work on various topics related to Fog
Computing [34]–[36]. Even though basic quality-of-service
(QoS) for applications has been addressed, the QoC for con-
trol applications in the fog is still an open issue. However,
there is a lot of useful literature in works that tackle the
problem of degradation of control applications [37]–[39].
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Researchers propose several approaches (such as partial
and spatial separation of control tasks, virtualization of PLCs,
scheduling of control tasks, co-design of control applications)
that guarantee extra-functional properties of control applica-
tions [40]–[43]. The presented approaches are well studied
and categorized into a category for platform configuration
and a category for the integration of applications. Good per-
formance for control applications will be ensured if both the
applications and the platforms are configured.

Separation and isolation of applications regarding criti-
cality levels ensure resource allocation to control applica-
tions. Researchers propose spatial and temporal separation
to integrate mixed-criticality applications [39], [42], [43]. In
this approach, partitions with different criticality levels sepa-
rate the application. Resources are allocated to the partitions
based on the criticality level, which assures resource avail-
ability and accessibility for critical applications with high
priority. These applications would have guaranteed depend-
ability by promising separation. A presentation of scheduling
in mixed-criticality systems, which also considers partition-
ing, is presented in [44]. For example, Tamas-Selicean et
al. [45] propose a method in which different Safety-Integrity
Levels (SIL) are assigned to the applications. In this method,
applications with the same SIL are mapped to a single parti-
tion. Each partition is allocated several time slots on a proces-
sor to execute respective tasks. Concerning this method, the
approach can provide a partition for each control application.

On the other hand, integration of the applications in the
platform affects their functional and extra-functional prop-
erties. The co-design of control applications configure them
at integration level to achieve the highest performance. The
co-design approach takes the platform characteristics into
account while designing the application to have good inte-
gration with the platform.

The QoC analysis and schedulability of the tasks are taken
into account while designing the control applications in [46]
and [47]. In the proposed approaches, the task scheduler
schedules the tasks concerning the QoC of control appli-
cations. Besides, co-design is used to determine the period
of tasks and design a robust and optimal controller. Other
researchers also focused on the co-design and scheduling of
control tasks to achieve the maximum QoC for control appli-
cations [39], [42], [43]. Co-design and scheduling concerning
QoC for control applications are also proposed in the seminal
work of Seto et al [26]. The authors optimize the period of
control applications concerning the QoC and schedulability
of the tasks.

Chwa et al. [48] propose a co-design and scheduling
method to maximize QoC for control applications. The
authors assign a sampling period, and a maximum number
of consecutive deadline misses as parameters for each task
concerning system stability. Then, the tasks are scheduled
concerning the parameters without compromising system sta-
bility and also with efficient use of resources. Mahmoud
et al. [43] use optimization algorithms to derive a timing
constraint of control tasks such as the task period to achieve

maximum QoC for the control applications concerning the
schedulability of the control tasks [49]. In this work, heuristic
algorithms are used to derive the period of tasks, deadlines
of the tasks and end-to-end response of the control loop.
The assigned parameters are assessed in a simulation that
schedules and executes the tasks.

Samii et al. [50] present an approach in which a con-
troller is synthesized for each plant, and the control tasks
are scheduled concerning the priority of the tasks. In this
work, the scheduling is based on the cost of control function,
which aims to consider the maximum QoC for all the control
applications. The same approach concerning co-design and
scheduling of control application is used in [51]. A similar
co-design approach is presented by Cervin et al. [52]. In this
work, the scheduler uses feedback from execution time and
also feed-forwards theworkload alongwith the cost of control
to achieve the best QoC . Besides, control task parameters
such as period are changed with the feedback from execution
time. The approach can compensate the impact of jitter on the
QoC .

Task scheduling has a significant impact on the perfor-
mance of control applications. The QoC-aware scheduling
reduces the degradation of control applications to some levels
based on the criticality of the application. Configuration of
the platform at the computation level, especially in the task
scheduler guarantees good performance for control appli-
cations. Barzegaran et al. [21] have presented a heuristic
approach for scheduling of tasks and mapping them to the
cores which maximizes the QoC of control applications.
The work also shows that allowing preemption in scheduling
of tasks improves the schedulability of tasks and QoC of
control applications. The work does not consider separation
of mixed-criticality tasks which is covered in this paper,
and it also ignores the effect of control tasks periods on the
schedulability, which is also covered in this paper. Task period
selection and cost function definition for the optimal control
behavior is based on the cost of the control. The scheduling
aims to cover the bounded jitter and latency regarding the
stability margin of the control applications. In the work by
Schneider et al. [53], the QoC measurement is embedded in
the task scheduler with allowed preemption. The scheduler is
capable of handling mixed-criticality applications as well.

Another co-design approach is considered in [54]. The
authors get feedback of delay and jitter in the execution of
tasks from the scheduler and feed it to the control appli-
cations. The controller takes the feedback and adjusts the
control output to compensate the delay and jitter impact and
to maximize the QoC . The feedback from the task scheduler
is also used to predict the jitter and delay. In [55], a feedback
scheduling framework is developed to schedule control tasks
such that the QoC is maximized for control applications and
to adjust workload constraints. The QoC measurement is
embedded in the task scheduler. The scheduler gets delay and
jitter feedback to change the period of the tasks concerning
the QoC and workload management. The same approach is
used in [56], to schedule tasks concerning the QoC with
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feedback from scheduling. In this work, the period of tasks
is changed regarding the feedback. Eker et al. [57], pro-
pose a similar method. The method uses feedback from the
scheduler to assign the period of control tasks. The period
assignment provides good control performance along with
optimizing the resource allocation of the task.

Cha et al. [58] propose a method for scheduling of con-
trol tasks which determines the deadline and period of the
tasks for achieving maximum QoC . The method optimizes
the QoC of the control applications and resource utilization.
In co-design approach presented in [59], the task scheduler
guarantees bounded delay and jitter in execution of control
application while the co-design approach guarantees that the
control application is still stable in the presence of bounded
delay and jitter. In work by Fan et al. [60], a scheduling
algorithm is proposed that can provide some degree of iso-
lation, which can host control applications. In this work,
control applications can be assigned to partitions to ensure the
separation. The algorithm also maps the tasks to the cores.

VIII. CONCLUSION AND FUTURE WORK
In this paper, we have addressed the problem of configuring
the mapping, partitioning, scheduling and periods of mixed-
criticality tasks when implementing the applications on a Fog
Computing Platform. The optimized solution has good and
balanced Quality-of-Control for critical control applications,
ensuring the schedulability of all real-time tasks, as well as
spatial and temporal isolation for mixed-criticality tasks. Our
proposed strategy is based-on a Simulated Annealing meta-
heuristics, which uses an Earliest Deadline First simulation.

We have evaluated this strategy on several test cases. As the
results show, our proposed optimization strategy successfully
generates solutions which have good and balanced Quality-
of-Control for control applications considering temporal iso-
lation for all the test cases in comparison with the solutions
that have ignored some of the optimization criteria.

The successful virtualization of control, achieving the
same control performance (and dependability) as the one
taken for granted in OT, is a crucial step towards the adoption
of Fog Computing in the industrial area. In our future work,
wewill consider the effect of the communication; wewill take
into account the possibility of incremental scheduling based
on our proposed strategy, and we will also consider other
optimization techniques such as constraint programming to
solve the problem.
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