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ABSTRACT
In this paper we address Industrial IoT control applications which
are safety-critical and real-time, and which have very low latency
and jitter requirements. These control applications are virtualized
as software tasks running on a Fog Computing Platform that brings
computing and deterministic communication closer to the edge of
the network, where the industrial “things” are located. Due to the
demanding dependability and timing requirements, we consider
that the tasks are scheduled with a static-cyclic scheduling policy.
We are interested to determine the mapping of the tasks and a
schedule table of their activation, such that wemaximize the quality-
of-control for the control tasks andmeet the timing requirements for
all tasks, including non-critical real-time tasks. We have proposed
a Simulated Annealing-based metaheuristic to solve this problem,
and we have evaluated the solution on several test cases.

CCS CONCEPTS
• Theory of computation → Scheduling algorithms; Simu-
lated annealing; • Computer systems organization → Real-
time system specification; • Hardware→ Safety critical systems.
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1 INTRODUCTION
We are at the beginning of a new industrial revolution, i.e., In-
dustry 4.0, which is underpinned by a digital transformation that
will affect all industries. Industry 4.0 will only become a reality
through the convergence of Operational and Information Technolo-
gies (OT & IT), which use different computation and communi-
cation technologies. OT consists of cyber-physical systems that
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monitor and control physical processes. These application areas
are typically safety-critical and real-time, requiring guaranteed
extra-functional properties, such as, real-time behavior, reliability,
availability, industry-specific safety standards, and security.

A new paradigm, called Fog Computing, is envisioned as an ar-
chitectural means to realize the IT/OT convergence [27]. According
to the OpenFog consortium, Fog Computing is a “system-level ar-
chitecture that distributes resources and services of computing,
storage, control and networking anywhere along the continuum
from Cloud to Things”. The main component of a Fog Computing
platform is the fog node (FN). In many applications, including in-
dustrial automation and robotics, several layers of fog nodes with
differing computation, communication and storage capabilities will
evolve, from powerful high-end fog nodes to low-end fog nodes
with limited resources. The main benefits of Fog Computing for
Industrial IoT is that it virtualizes and integrates several separate
equipment, such as gateways, Programmable Logic Controllers
(PLCs), Industrial PCs. This will lead to 50% reduction in hardware
costs and will bring the same ease of deployment and configuration
as the one taken for granted in Cloud Computing [29].

An FN is equipped with computational resources that allows
the execution of applications and it is connected to a larger data
processing facility like a Cloud environment. Regarding computa-
tion, we assume that the control tasks are running in an Real-Time
Operating System using real-time scheduling policies (we consider
static-cyclic scheduling in this paper), and the control applications
are separated in different “partitions” enforced using hardware-
supported virtualization. We assume that the FN is connected to
the machines through a deterministic communication solution,
such as IEEE 802.1 Time-Sensitive Networking (TSN) [14]. Such
Fog Computing Platforms (FCPs) are envisioned, for example, in the
FORA EU project1, and in the “Nerve” products from TTTech [29].

The FCP allows to increase the spatial distance between the
physical process and the FN that controls it, allowing the control
functions to be executed remotely on the FN. However, the way
the FCP is configured has an impact on the control performance
of the control applications. In this paper, we are interested in the
configuration of the FCP, such that the extra-functional properties
of the control tasks are guaranteed. In particular, we address the
problem of mapping and scheduling of the control tasks on the FNs;
we do not address the issue of partition optimization [28] and the
scheduling of messages on TSN [9], leaving these aspects for future
work.

1http://fora-etn.eu
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Related work. There is already a lot of work on various topics
related to Fog Computing, see surveys such as [18, 21, 31]. However,
thework so far addresses quality-of-service applications that are not
safety-critical and real-time. None of the approaches for resource
management [1] (that configure the FCP resources) are applicable to
our context. However, there have been several related works in the
area of co-design of control and real-time [3, 4, 19, 23, 26, 30, 33]
which have tackled the design of controllers and scheduling of
the control tasks with respect to the control performance. The co-
design procedure involves designing of control applications such
that the controller is robust against degradation due to scheduling
of the tasks. Related work has also investigated the impact of the
virtualization of control applications (in Cloud Computing) [10, 12,
13]. The virtualization of control applications involves resource
management and scheduling of control applications for guaranteed
control performance. The performance of a feedback control system
(FCS) is evaluated by measuring various parameters such as settling
time, rise time, overshoot, offset error, etc. Various computational
methods have been introduced to evaluate the performance of an
FCS [2, 11, 25].

Researchers [7, 8, 24, 32] have addressed the problem of sched-
uling control tasks for improving the control performance. In the
context of static scheduling, researchers have not considered pre-
emption, i.e., allowing tasks to be preempted by other tasks when
constructing the schedule tables. The control performance is not
only affected by the scheduling of tasks but also affected by the
scheduling of messages in networks. Only a few of the works con-
cerning scheduling of control tasks consider Deterministic Ethernet,
such as TSN [17].

In this paper, we propose a Simulated Annealing (SA)-based
metaheuristic strategy for the mapping and scheduling of mixed-
criticality tasks. The tasks are scheduled such that the quality-of-
control (QoC) for all critical control applications is maximized and
deadlines are met for all tasks, including non-critical real-time
tasks. Within the SA, the static-cyclic schedule table is synthesized
based on an offline simulation of an Earliest Deadline First (EDF)
scheduling policy, controlled by SA-generated parameters such as
offsets and relative deadlines. Compared to related work, we take
into account non-control real-time tasks, and we allow preemption
in the static schedules (decided at design time), increasing thus the
solution space.

2 CONTROL THEORY
The mathematical relation between the input, output and state vari-
ables of a dynamical system can be modelled as a linear differential
equation and denoted by a state-space representation captured by
(1) [22]:

Ûx(t) = Ax(t) + Bu(t)
y(t) = Cx(t) + Du(t), (1)

where x(t), u(t) and y(t) denote the state, input and output respec-
tively. The state space representation of a dynamical system can be
replaced by the transfer functions [22]. A controller can drive the
output of the dynamical system to the desired state by applying an
appropriate control signal u(t). Various methods can be utilized to
calculate suitable control signals for a dynamical system [22]. An
FCS aims to minimize the deviation of the current output from the

desired output r (t) by sampling the deviation e(t) = r (t) − y(t). In
this paper, we generically assume r (t) = 0.

A control application usually has three tasks, (i) sensor, (ii) con-
trol and (iii) actuation. Data from sensors is captured and processed
by the sensor task. The control signals, based on the implemented
control method, are calculated in the control task, which imple-
ments the control law. The actuation command is produced based
on the control signals in the actuation task. A control loop is widely
dependent on time, meaning that the time variations in each task,
both in terms of execution and input-output delivery, affect the con-
trol performance. For example, release jitter is the worst-case delay
between the arrival of a task and its release. It is possible to neu-
tralize the effects of fixed communication latency in links between
sensors to processing elements and processing elements to actua-
tors by utilizing proper compensators in the control method [15].
Given that most of the sensors and actuators are mechanical parts,
the time dependencies and the related variations for the internal
dynamics of the actuators and sensors can be either neglected or
compensated by implementing proper compensators in the control
law. However, the scheduling of tasks has an impact on the control
performance, which we address in this paper.

3 SYSTEM ARCHITECTURE AND
APPLICATION MODELS

Architecture model. The FCP architecture is modelled as a set
of nodes denoted with ϒ. Each node, υi ∈ ϒ can be a processing
element esi , network switch, sensor or actuator. In this architecture,
each processing element is an FN. Each FN esi has a set of cores
CSi . The tasks are scheduled using static cyclic scheduling. The
set of all schedule tables in the FCP is denoted with S, and will
be determined by our optimization approach in Sect. 4. For each
core csj ∈ CSi , its schedule table is denoted with sj ∈ S. The static
schedule table captures the start time and finishing time of the tasks
which are assigned to the respective core. The static schedule table
repeats with a hyperperiod, which is the least common multiple of
all the assigned task periods, see the application model below. An
example architecture is presented in Fig. 1.

Application model. The set of all applications in the system
is denoted with Γ. An application is modelled as a directed acyclic
graph (DAG), Ai (Hi ,Ei ) ∈ Γ. Each node hj (Fj ,Cj ) ∈ Hi of the
graph represents one task. Each edge ϵmn ∈ Ei captures the data
flow between tasks, which means that the output of hm is the input

Figure 1: Example architecture model
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Figure 2: Example application model

to hn . A task produces its output when it terminates. A task will
be ready to execute when all its inputs have arrived. For each task
hj we know its worst-case execution time (WCET)Cj , its period Fj
and its deadline D j . The WCET of a task is specified for each core
where the task is considered for mapping. The tasks are mapped to
cores by utilizing the function M : Hi −→ N , where N is the set
of all cores in the FNs of the FCP. The mapping is decided by our
optimization approach.

An example application model composed of three applications
is presented in Fig. 2. The WCETs and periods of the tasks (in
milliseconds) are given in the figure; in this example, the deadlines
are equal to the periods. The applications A1 and A2 represent
Real-Time Applications (RTA) that do not implement a FCS (they
are non-control tasks that have hard deadlines). A3 represents a
Single Input Single Output (SISO) Control Application (CA). In
our example, A3 implements a controller that controls the speed
of a DC motor. The task h4 ∈ H3 filters the sensor data that is
the current speed of the rotor. The task h5 ∈ H3 represents a PID
controller that gets the speed of rotor from h4 ∈ H3. The task
h6 ∈ H3 represents an actuator that is an electric voltage regulator;
it takes the control signal of h5 ∈ H3 as input and calculates the
voltage command for the actuator. A unit function is used for both
sensor and actuator tasks, h4 and h6. A discrete PID controller with
wide stability margin is designed and used in task h5. The transfer
function of the system plant is shown in (2) and the parameters for
the transfer function are shown in Table 1.

P(s) =
ÛΘ(s)
V (s) =

(Kt + Ke )/2
(Js + b)(Ls + R) + ((Kt + Ke )/2)2

. (2)

Table 1: Parameters for the function (2)

Symbol Definition Unit
ÛΘ angular velocity of the rotor rad/s
V electric voltage of the stator V
J moment of inertia of the rotor kg·m2

b motor viscous friction N·m·s
Ke electromotive force constants N/rad/s
Kt motor torque constants N·m/A
R electric resistance Ω
L electric inductance H

4 PROBLEM FORMULATION AND SOLUTION
Given (1) a set Γ of applications and (2) the architecture of the
system modelled by nodes ϒ, we want to determine a mapping
M of the tasks to cores and the schedule tables S, such that (1)
maximum control performance is achieved for the CAs, (2) the
deviation between these performances is minimized for the CAs,
and (3) the deadlines for all tasks (in both CAs and RTAs) are met.

Optimization Strategy. Our problem is NP-complete. We pro-
pose a Simulated Annealing (SA)-based metaheuristic approach
extended from [20] in order to solve the problem. SA is an optimiza-
tion heuristic that tries to find the global optimum by performing
design transformations (also called moves) to generate new “neigh-
boring solutions” of the current solution [5]. Each visited solution
is evaluated in terms of the Cost of Control function from eq. (3).
A solution is invalid if the deadlines are not satisfied. Note that
SA, being a metaheuristic, is not guaranteed to find the optimal
solution.

To decide the mapping, the SA ”moves” change the mapping
of tasks to cores (swapping two randomly selected tasks). Given a
mapping, the schedule table is synthesized based on “simulating” an
Earliest Deadline First (EDF) scheduling policy at design time. EDF
is a well-known scheduling algorithm [6] that decides at runtime
which of the ready tasks gets to run on the processor. EDF uses
dynamic task priorities based on their relative deadlinesdi : The task
with the earliest deadline, considering the current time moment, is
given the highest priority and may interrupt lower priority tasks.
The schedule is influenced by the offsets of the tasks (their earliest
start times) and the relative deadlines. Considering that each task
runs for its WCET, and given a mapping, a set of offsets and dead-
lines, we simulate how the EDF scheduling policy would perform
the scheduling on each core. We consider the outcome of such a
simulation to be the schedule tables S. In our approach, SA uses
moves to change the task offsets and relative deadlines di (smaller
or equal to the respective task deadline Di ), before using the EDF
simulation. By controlling the offsets and relative deadlines, we
generate different schedules, exploring thus the solution space.

Cost of Control. Several functions have been proposed for mea-
suring the quality-of-control of an FCS [25]. In this paper, we use
a performance index that evaluates the behavior of the controller
over time and call it the Cost of Control (CoC) function. The con-
trol performance is improved if the CoC decreases. The CoC is a
quadratic function of the tracking error and the control signal:

CoC = lim
t→∞

∫ T

0
(e2(t) + u2(t))dt . (3)

We determine the CoC for a given application Ai , mappingM and
schedule S using the Matlab toolbox Jitterbug [16]. The jitter for the
applicationAi is extracted from the schedule tables S . For the known
application Ai , Jitterbug calculates the performance index based on
the system model and the respective jitter. Jitterbug assumes that
there are stationary stochastic disturbances that drive the plant
away from the desired state. It further assumes that the timing
variation of the controller tasks in each period can be described
using a set of independent random delays. The delay distributions
are specified as discrete-time probability density functions with a
time-grain δ .
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Internally, Jitterbug samples the cost function, the plant dynam-
ics and the stochastic disturbances with the time step δ . Based on
the random delay descriptions, it then formulates the closed-loop
system as a jump linear system and calculates the covariance of
the plant state x in each Markov node. Finally, it evaluates the
CoC based on the stationary probability of being in each Markov
node and the penalty assigned to different plant states and control
signals.

5 RESULTS
We have used several test cases to evaluate our proposed solution.
The solution was implemented in C# and all the experiments were
run on a laptop with an i7 CPU at 2.8 GHz and 16 GB of RAM, with
a time limit of 10 to 20 minutes, depending on the size of the test
case.

Let us first discuss the results obtained on the example applica-
tions from Fig. 2, considering an FCP consisting of one single-core
FN. We have generated the schedule table using our proposed strat-
egy from Sec. 4. The resulting schedules are depicted in Fig. 3b
and 3c. The schedule in Fig. 3b allows preemption (called QS-P),
whereas in Fig. 3c we do not allow preemption (QS-NP). For com-
parison purposes, we have also generated a schedule as it would be
produced if we applied the EDF algorithm (EDF) shown in Fig. 3a,
but without optimizing the schedule for quality-of-control. The
Table 2 compares these alternative solutions in terms of the per-
formance of the control application (CA) and the impact on the
non-control applications (RTAs). The values in the Jitter and CoC
columns are sums over the respective applications and the values
in the “Missed deadlines” column are the total number of deadline
misses for RTAs (CAs meet all their deadlines) in a hyperperiod.
(Smaller means better for all values in the table.)

Table 2: Three different solutions for the applications in
Fig. 2

Solutions CA Jitter RTAs Jitter CoC Missed deadlines

EDF 2.874 µs 13.006 µs 3.867 3
QS-P 0.918 µs 6.689 µs 2.399 0
QS-NP 1.034 µs 15.693 µs 1.961 2

As we can see, the EDF solution, which is not aware of Quality-
of-control (QoC), leads to poor quality solutions: large CoC values,

(a) EDF scheduling (EDF)

(b) QoC-aware Scheduling with Preemption (QS-P)

(c) QoC-aware Scheduling without Preemption (QS-NP)

Figure 3: Three different schedules for the applications in
Fig. 2

large CA and RTA jitters (large jitters are detrimental also for RTA),
and missed deadlines for RTA tasks. The QoC-aware solution found
by QS-NP obtains the best control performance, at the expense of
missing the deadlines for RTA (hence the solution is not valid) and
increased jitters. Only by allowing preemption in the schedules
(the solution called QS-P) we are able to meet all the deadlines, and
also obtain good control performance.
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Figure 4: Plant output depicting QoC of the three solutions

The control performance is visually depicted in Fig. 4 for each
of the three solutions in terms of FCS plant output over time. The
FCS behavior of EDF has a long settling time, with residual errors.
Comparing the QS-P and QS-NP solutions, we can see that the be-
havior is almost the same. The QS-P has a slightly larger overshoot.
The conclusion is that by allowing preemption we can still obtain
good quality of control, at the same time meeting the deadlines for
all applications.

We have also evaluated our proposed solutions on six additional
test cases, see Table 3, where column 2 shows the number of cores in
the FCP. Several different CAs and RTAs are used, see columns 3 and
4 for their respective number. The values in the CoC columns are
sums and the values in the “Misses” columns are the total number
of deadline misses for RTAs (CAs meet their deadlines in all cases).
The results confirm the conclusion from our first experiment: QS-P
obtains the best results (good control performance and no missed
deadlines). Although there are cases where QS-NP obtains slightly
better control performance, these solutions are not valid because
of the missed deadlines for RTA.

6 CONCLUSIONS AND FUTUREWORK
In this paper we have addressed the problem of mapping and sched-
uling mixed-criticality applications (both CA and non-control RTA)
on a FCP. We have proposed an SA-based metaheuristic strategy
that uses an EDF simulation to generate the schedules. We have
evaluated this strategy on several test cases. As the results show,
considering the QoC of the control applications during the opti-
mization (hence, being control-aware) we can obtain solutions that
have a good control performance. However, this improved control
performance may come at the expense of missing the deadlines for
non-control applications. We have shown that allowing preemp-
tion in the schedules we can find solutions that can also meet these
deadlines.

The successful virtualization of control, achieving the same con-
trol performance (and dependability) as the one taken for granted
in OT, is a crucial step towards the adoption of Fog Computing
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Table 3: Evaluation results for six test cases

# Cores No. No. Total CoC Misses CoC Misses
of of No. of for for for for
CA RTA Tasks QS-P QS-P QS-NP QS-NP

1 4 4 8 20 2.718 0 2.481 1
2 4 4 10 22 3.802 0 3.264 2
3 4 4 16 28 2.586 0 2.719 0
4 5 5 9 24 3.432 0 3.374 1
5 5 6 7 25 4.280 0 4.215 1
6 5 5 15 30 3.594 0 3.640 1

in the industrial area. In our future work, we will consider pe-
riod selection for control applications; we will take into account
the effect of spatial and temporal separation (partitioning) on the
control performance and we will also consider the effect of the
communication.
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